图像处理-双边滤波和联合双边滤波
双边滤波原理
双边滤波(Bilateral Filter)是一种非线性滤波器,可以达到保持边缘,降噪平滑的效果。其算法最早由C. Tomasi和R. Manduchi在论文《Bilateral Filtering for Gray and Color Images》中提出,按照原文中的话说It combines gray levels or colors based on both their geometric closeness and their photometric similarity, and prefers near values to distant values in both domain and range. 双边滤波的权重不仅考虑了像素的欧氏距离(如普通的高斯低通滤波,只考虑了位置对中心像素的影响),还考虑了像素范围域中的辐射差异(例如卷积核中像素与中心像素之间相似程度、颜色强度,深度距离等),在计算中心像素的时候同时考虑这两个权重。
- 空间权重:空间域(spatial domain S)与像素位置有关,为像素之间的距离(欧式距离),定义为全局变量,通常定义如下:
s ( ξ , x ) = e − 1 2 ( d ( ξ , x ) σ d ) 2 s(\xi,x) = e^{-\frac{1}{2}(\frac{d(\xi,x)}{\sigma{_d}})^2} s(ξ,x)=e−21(σdd(ξ,x))2
其中 d ( ξ , x ) = ∣ ∣ ξ − x ∣ ∣ d(\xi,x)=||\xi-x|| d(ξ,x)=∣∣ξ−x∣∣表示两个像素之间的欧式距离,滤波过程如下:
h ( x ) = k d − 1 ( x ) ∫ − ∞ ∞ ∫ − ∞ ∞ f ( ξ ) s ( ξ , x ) d ξ h(x)=k_d^{-1}(x)\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(\xi)s(\xi,x)d\xi h(x)=kd−1(x)∫−∞∞∫−∞∞f(ξ)s(ξ,x)dξ
权值为: k d ( x ) = ∫ − ∞ ∞ ∫ − ∞ ∞ s ( ξ , x ) d ξ k_d(x)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}s(\xi,x)d\xi kd(x)=∫