论文导读:Deep Attentive Learning for Stock Movement Prediction From Social Media Text and Company Correl

本文探讨了如何利用社交媒体信息(如Twitter)和历史股价数据预测股票走势。MAN-SF模型通过PriceEncoder和SocialMediaInformationEncoder编码价格和社交媒体信号,结合GraphAttentionNetwork进行预测。实验表明,这种多模态融合方法能有效增强预测能力。评价指标包括MCC,与传统技术相比,MAN-SF展现出优越性能。
摘要由CSDN通过智能技术生成

1. Introduction

股票走势受到多方面影响,没有了解相关信息的投资决策会面临金融风险以及金钱损失,而仔细考虑过的投资可以使收益增大。传统的方法依赖于时间序列,以及对股票的分析,比如利用历史价格。然而只利用价格信号,难以捕捉一些突然发生的事件造成的影响。正如社交媒体,对股票的影响,然后举了个特朗普发推特导致洛克希德马丁公司股票下跌的例子。
提到有效市场假说(Efficient Market Hypothesis,EMH),股票的价格反映了所有已知信息,

2. Related Works

传统啊的方法依赖于TA(Technical Analysis),这种方法只关注于数字特征,比如历史价格,或者宏观经济参数GDP。
而新的方法,依赖于EMH, 被认定为一种FA(Fundamental Analysis)

3. Problem Formulation

MAN-SF的主要目标是暂时学习来自推文和历史价格信号的相关信息,并利用股票之间的公司关系来预测走势,本文进行的是一个二元预测,在这里插入图片描述
p d c p_d^c pdc是指第d天的收盘价, 所以0表示下跌,1表示涨

4. MAN-SF:Components and Learning

整体结构如下图:
在这里插入图片描述
模型首先会编码某一个范围内的市场信息data:
x t = B ( c t , q t ) x_t= \Beta (c_t, q_t) xt=B(ct,qt), 其中 c t c_t ct是基于一个lag时间窗口关于一系列股票 S = [ s 1 , s 2 , . . , s S ] S=[s_1,s_2, .., s_S] S=[s1,s2,..,sS]的编码Tweet, 而 q t q_t qt 是历史股价信息

4.1 Price Encoder

Price Encoder整体结构
在这里插入图片描述
这个结构会编码历史股价的走势从而产生价格特征(price feature) q t q_t qt, 它从过去的 T 天获取每日价格特征,并对价格的时间趋势进行编码。使用GRU获取交易日之间的序列依赖(sequential dependencies)。

在这里插入图片描述
p i = [ p i c , p i h , p i l ] p_i=[p_i^c, p_i^h,p_i^l] pi=[pic,pih,pil]分别对应收盘价,最高价,最低价。
然后会进行normalize: p i = p i c / p i − 1 c p_i = p_i^c/p_{i-1}^c pi=pic/pi1c

由于每天的trend对最终trend的预测贡献不同,所以应用到attention
在这里插入图片描述
h ˉ z \bar{h}_z hˉz是concat之后的GRU hidden states, β i \beta_i βi是对每一个交易日的attention weight,(大致的attention计算都一样的,具体可以看我的另一篇文章attention的矩阵表示及理解),

4.2 Social Media Information Encoder(SMI)

第一段说,社交媒体不仅提供实际信息,也刻画了用户对于股票的情感,而这个社交媒体特征 c t c_t ct就靠以下结构Figure3获得:
在这里插入图片描述
关于Tweet的Embedding,本文会用到Glove,FastText以及USE(Universal Sentence Encoders),最终根据经验,用到了效果最好的USE。
在这里插入图片描述
其中 [ m 1 , m 2 , . . , m K ] [m_1, m_2 ,.., m_K] [m1,m2,..,mK]是经过了USE之后的Tweet表示,K是第i个交易日平均每支股票的相关Tweet数量。
由于Tweet的影响力也是不同的,所以这里用到News-Level Attention,
在这里插入图片描述
这里的attention结构和前面类似,由于 r i r_i ri只表示第i天的表示,他要对过于T天的表示进行一个整合
在这里插入图片描述
总结第 i 天股票 s 的推文以及前几天的推文,同时关注第 i 天, 最后对于素有T天, c t = ζ ( h ˉ s ) c_t=\zeta(\bar{h}_s) ct=ζ(hˉs)

4.3 Blending Multimodal Information

获得了两方面的表示之后,就可以联合到一起了
来自不同模式的信号通常携带有关市场中不同事件的补充信息,
正如前面提到的 x t x_t xt就是联合表示
在这里插入图片描述

4.4 Graph Attention Network(GAT)

这一层的输入就是一系列的 x t x_t xt也就是stock 联合信息,
h = [ x 1 , x 2 , . . . , x ∣ S ∣ ] h=[x_1, x_2, ..., x_{|S|}] h=[x1,x2,...,xS]

然后又是一层attention:
在这里插入图片描述
其中 ⨁ \bigoplus 是concat的意思,
学习到的注意力系数 α i j α_{ij} αij 用于加权和聚合来自具有非线性 σ 的相邻特征向量,
更新后的节点特征
在这里插入图片描述
在这里插入图片描述
最后的目标函数
在这里插入图片描述

5. Experiments

具体数据有哪些请直接看论文,
evaluation metrics会用到MCC
在这里插入图片描述
Baselines:
在这里插入图片描述
Fundamental Analysis:
在这里插入图片描述
在这里插入图片描述
这里跟我前几天的另一篇提到的论文导读: Stock Movement Prediction from Tweets and Historical Prices是差不多的(果然天下文章全靠水啊)。

6. Results and Analysis

在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值