论文阅读——Stock Movement Prediction from Tweets and Historical Prices

本文探讨了如何通过一个新颖的StockNet模型,利用递归连续潜在变量处理股票市场随机性,结合文本和价格信号进行股票走势预测。文章强调时间依赖性在预测中的重要性,并提出混合目标以捕捉依赖关系,从而改进现有生成模型在市场信息处理和时间序列预测方面的不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读——Stock Movement Prediction from Tweets and Historical Prices

出处

摘要

股票走势预测是一个具有挑战性的问题:市场是高度随机的,并且要根据混乱的数据做出与时间相关的预测。这篇文章处理这三种复杂性,并提出一个新颖的深度生成模型,共同利用文本和价格信号来完成这项任务。与判别式或主题建模不同,这篇文章引入了递归的、连续的潜在变量以更好地处理随机性,并使用神经变分推理来解决难以处理的后验推理,还提供了一个带有时间辅助的混合目标以灵活地捕捉预测依赖关系

动机

  • 生成主题模型不是仅使用确定性特征,而是扩展为共同学习任务的主题和情感。与判别模型相比,生成模型在描述从市场信息到股票信号的生成过程和引入随机性方面具有天然优势。然而,大多数模型用词袋来表示混乱的社交文本,并使用简单的离散潜在变量。
  • 现有的NLP研究没有解决移动预测之间时间依赖性的重要性。举个例子:当一家公司在交易日d1遭遇重大丑闻时,一般情况下,其股价将在接下来的交易日内呈下降趋势,直至 d2 日,即 [d1,d2].2 如果股票预测者能够识别这一点下降模式,它可能有利于 [d1,d2] 期间的所有运动预测。否则,可能会损害此区间的准确性。This
    predictive dependency is a result of the fact that public information, e.g. a company scandal, needs time to be absorbed into movements over time , and thus is largely
    shared across temporally-close predictions。
  • 旨在解决市场高随机性、混乱市场信息和时间依赖预
### 关于 DeepSeek 的股票预测功能 DeepSeek 是一家以技术创新为核心的人工智能公司,其在高效资源利用和开放开源策略方面表现突出[^1]。然而,当前官方资料表明该公司主要集中在研究阶段,并未透露具体的商业化应用细节或计划,因此关于使用 DeepSeek 进行股票预测的具体方法和教程尚无正式发布的信息。 尽管如此,基于一般 AI 大模型的应用逻辑,如果未来 DeepSeek 提供了类似的金融服务API接口或其他形式的支持,则可以预期实现股票预测的方式可能涉及以下几个方面的准备工作: #### 准备工作 - **数据收集**:获取历史股价、交易量等相关市场数据作为训练样本。 - **环境搭建**:安装必要的 Python 库和其他依赖项来处理金融时间序列数据并调用潜在的 DeepSeek API 或者其他机器学习框架。 ```bash pip install pandas numpy scikit-learn tensorflow deepseek-sdk # 假设存在这样的SDK包名 ``` - **特征工程**:提取有助于提高预测精度的技术指标(如移动平均线)、宏观经济因素等特征向量。 #### 示例代码片段 下面是一个假设性的例子,展示了如何构建一个简单的 LSTM 模型来进行短期价格趋势预测。请注意这只是一个概念验证级别的示例,并不代表实际可用的产品级解决方案。 ```python import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import deepseek_sdk as dsdk # 假定 SDK 名称为 'deepseek_sdk' # 加载并预处理数据... data = ... # 此处省略具体的数据加载过程 scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) # 构建LSTM网络结构... model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(Dense(1)) # 编译与拟合模型... model.compile(optimizer='adam', loss='mean_squared_error') history = model.fit(X_train, y_train, epochs=25, batch_size=32) # 利用训练好的模型进行预测... predicted_stock_price = model.predict(X_test) predicted_stock_price = scaler.inverse_transform(predicted_stock_price) # 如果有 DeepSeek 特有的优化函数或者其他特性,这里会调用它们 optimized_prediction = dsdk.optimize_predictions(model, X_test) # 非真实存在的API调用方式 ``` 需要注意的是上述代码仅为示意用途,在真正实施之前还需要考虑更多实际情况下的调整和完善措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值