出处
摘要
股票走势预测是一个具有挑战性的问题:市场是高度随机的,并且要根据混乱的数据做出与时间相关的预测。这篇文章处理这三种复杂性,并提出一个新颖的深度生成模型,共同利用文本和价格信号来完成这项任务。与判别式或主题建模不同,这篇文章引入了递归的、连续的潜在变量以更好地处理随机性,并使用神经变分推理来解决难以处理的后验推理,还提供了一个带有时间辅助的混合目标以灵活地捕捉预测依赖关系
动机
- 生成主题模型不是仅使用确定性特征,而是扩展为共同学习任务的主题和情感。与判别模型相比,生成模型在描述从市场信息到股票信号的生成过程和引入随机性方面具有天然优势。然而,大多数模型用词袋来表示混乱的社交文本,并使用简单的离散潜在变量。
- 现有的NLP研究没有解决移动预测之间时间依赖性的重要性。举个例子:当一家公司在交易日d1遭遇重大丑闻时,一般情况下,其股价将在接下来的交易日内呈下降趋势,直至 d2 日,即 [d1,d2].2 如果股票预测者能够识别这一点下降模式,它可能有利于 [d1,d2] 期间的所有运动预测。否则,可能会损害此区间的准确性。This
predictive dependency is a result of the fact that public information, e.g. a company scandal, needs time to be absorbed into movements over time , and thus is largely
shared across temporally-close predictions。 - 旨在解决市场高随机性、混乱市场信息和时间依赖预