考研数学精选题目010

题目

D : 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 D:0 \le x \le 2,0 \le y \le 2 D:0x2,0y2
1 ) I = ∬ D ∣ x y − 1 ∣ d x d y . 1)I = \iint\limits_D {|xy - 1|dxdy.} 1)I=Dxy1∣dxdy.
2 ) 2) 2) f ( x , y ) f(x,y) f(x,y) D D D上连续,且 ∬ D f ( x , y ) d x d y = 0 \iint\limits_D {f(x,y)dxdy = 0} Df(x,y)dxdy=0 ∬ D x y f ( x , y ) d x d y = 1 \iint\limits_D {xyf(x,y)dxdy = 1} Dxyf(x,y)dxdy=1,试证明: ∃ ( ξ , η ) ∈ D , s . t . ∣ f ( ξ , η ) ∣ ≥ 1 I . \exists \left( {\xi ,\eta } \right) \in D,s.t.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} |f\left( {\xi ,\eta } \right)| \ge {1 \over I}. (ξ,η)D,s.t.f(ξ,η)I1.

来源

国庆特训营

证明

1 ) 1) 1) D 2 : 1 2 ≤ x ≤ 2 , 1 x ≤ y ≤ 2 , {D_2}:{1 \over 2} \le x \le 2,{1 \over x} \le y \le 2, D2:21x2,x1y2 D 1 D_1 D1区域为 D D D区域中去除 D 2 D_2 D2区域,则 I = ∬ D 1 ( 1 − x y ) d x d y + ∬ D 2 ( x y − 1 ) d x d y = ∬ D − D 2 ( 1 − x y ) d x d y + ∬ D 2 ( x y − 1 ) d x d y = ∬ D ( 1 − x y ) d x d y + 2 ∬ D 2 ( x y − 1 ) d x d y = ∫ 0 2 d x ∫ 0 2 ( 1 − x y ) d y + 2 ∫ 1 2 2 d x ∫ 1 x 2 ( x y − 1 ) d y = ∫ 0 2 ( 2 − 2 x ) d x + 2 ∫ 1 2 2 ( 2 x − 2 + 1 2 x ) d x = 2 ln ⁡ 2 + 3 2 . I = \iint\limits_{{D_1}} {\left( {1 - xy} \right)dxdy} + \iint\limits_{{D_2}} {\left( {xy - 1} \right)dxdy} = \iint\limits_{D - {D_2}} {\left( {1 - xy} \right)dxdy} + \iint\limits_{{D_2}} {\left( {xy - 1} \right)dxdy} = \iint\limits_D {\left( {1 - xy} \right)dxdy} + 2\iint\limits_{{D_2}} {\left( {xy - 1} \right)dxdy} = \int_0^2 {dx} \int_0^2 {\left( {1 - xy} \right)} dy + 2\int_{{1 \over 2}}^2 {dx} \int_{{1 \over x}}^2 {\left( {xy - 1} \right)dy} = \int_0^2 {\left( {2 - 2x} \right)dx} + 2\int_{{1 \over 2}}^2 {\left( {2x - 2 + {1 \over {2x}}} \right)dx} = 2\ln 2 + {3 \over 2}. I=D1(1xy)dxdy+D2(xy1)dxdy=DD2(1xy)dxdy+D2(xy1)dxdy=D(1xy)dxdy+2D2(xy1)dxdy=02dx02(1xy)dy+2212dxx12(xy1)dy=02(22x)dx+2212(2x2+2x1)dx=2ln2+23.
2 ) 2) 2) 1 = ∬ D x y f ( x , y ) d x d y − ∬ D f ( x , y ) d x d y = ∣ ∬ D ( x y − 1 ) f ( x , y ) d x d y ∣ ≤ ∬ D ∣ x y − 1 ∣ ∣ f ( x , y ) ∣ d x d y ≤ ∬ D ∣ x y − 1 ∣ ∣ f ( ξ , η ) ∣ d x d y = ∣ f ( ξ , η ) ∣ ∬ D ∣ x y − 1 ∣ d x d y = ∣ f ( ξ , η ) ∣ ⋅ I 1 = \iint\limits_D {xyf(x,y)dxdy} - \iint\limits_D {f(x,y)dxdy} = |\iint\limits_D {\left( {xy - 1} \right)f(x,y)dxdy| \le } \iint\limits_D {|xy - 1||f(x,y)|dxdy} \le \iint\limits_D {|xy - 1||f\left( {\xi ,\eta } \right)|dxdy} = |f\left( {\xi ,\eta } \right)|\iint\limits_D {|xy - 1|dxdy} = |f\left( {\xi ,\eta } \right)| \cdot I 1=Dxyf(x,y)dxdyDf(x,y)dxdy=D(xy1)f(x,y)dxdyDxy1∣∣f(x,y)dxdyDxy1∣∣f(ξ,η)dxdy=f(ξ,η)Dxy1∣dxdy=f(ξ,η)I其中 ∣ f ( ξ , η ) ∣ |f\left( {\xi ,\eta } \right)| f(ξ,η) ∣ f ( x , y ) ∣ |f(x,y)| f(x,y)在闭区域 D D D上的最大值.
∃ ( ξ , η ) ∈ D , s . t . ∣ f ( ξ , η ) ∣ ≥ 1 I . \exists \left( {\xi ,\eta } \right) \in D,s.t.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} |f\left( {\xi ,\eta } \right)| \ge {1 \over I}. (ξ,η)D,s.t.f(ξ,η)I1.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Oliver_xiaofengfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值