考研数学精选题目008

题目

f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,且 ∫ 0 1 f ( x ) d x = ∫ 0 1 x f ( x ) d x = 1 , \int_0^1 {f\left( x \right)dx} = \int_0^1 {xf\left( x \right)dx} = 1, 01f(x)dx=01xf(x)dx=1
试证明: ∫ 0 1 f 2 ( x ) d x ≥ 4 \int_0^1 {{f^2}\left( x \right)dx} \ge 4 01f2(x)dx4.

来源

教材,解析非原创

证明

注意到 ∫ 0 1 [ f ( x ) − 6 x + 2 ] 2 d x ≥ 0 \int_0^1 {{{\left[ {f\left( x \right) - 6x + 2} \right]}^2}dx \ge 0} 01[f(x)6x+2]2dx0
∫ 0 1 [ f ( x ) − 6 x + 2 ] 2 d x = ∫ 0 1 [ f 2 ( x ) − 12 x f ( x ) + 4 f ( x ) + 36 x 2 − 24 x + 4 ] d x = ∫ 0 1 f 2 ( x ) d x − 4 ≥ 0 \int_0^1 {{{\left[ {f\left( x \right) - 6x + 2} \right]}^2}dx} = \int_0^1 {\left[ {{f^2}\left( x \right) - 12xf\left( x \right) + 4f\left( x \right) + 36{x^2} - 24x + 4} \right]dx} = \int_0^1 {{f^2}\left( x \right)dx} - 4 \ge 0 01[f(x)6x+2]2dx=01[f2(x)12xf(x)+4f(x)+36x224x+4]dx=01f2(x)dx40
即证得 ∫ 0 1 f 2 ( x ) d x ≥ 4. \int_0^1 {{f^2}\left( x \right)dx} \ge 4. 01f2(x)dx4.
注意到的根源:
假设
∫ 0 1 [ f ( x ) + a x + b ] 2 d x ≥ 0 \int_0^1 {{{\left[ {f\left( x \right) + ax + b} \right]}^2}dx} \ge 0 01[f(x)+ax+b]2dx0
∫ 0 1 f 2 ( x ) d x + ∫ 0 1 [ 2 a x f ( x ) + 2 b f ( x ) + 2 a b x + a 2 x 2 + b 2 ] d x ≥ 0 \int_0^1 {{f^2}\left( x \right)dx} + \int_0^1 {\left[ {2axf\left( x \right) + 2bf\left( x \right) + 2abx + {a^2}{x^2} + {b^2}} \right]dx} \ge 0 01f2(x)dx+01[2axf(x)+2bf(x)+2abx+a2x2+b2]dx0

∫ 0 1 f 2 ( x ) d x ≥ − 2 a − 2 b − a b − a 2 3 − b 2 \int_0^1 {{f^2}\left( x \right)dx} \ge - 2a - 2b - ab - {{{a^2}} \over 3} - {b^2} 01f2(x)dx2a2bab3a2b2

g ( a , b ) = 2 a + 2 b + a b + a 2 3 + b 2 g\left( {a,b} \right) = 2a + 2b + ab + {{{a^2}} \over 3} + {b^2} g(a,b)=2a+2b+ab+3a2+b2

∂ g ( a , b ) ∂ a = 2 + b + 2 3 a , ∂ g ( a , b ) ∂ b = 2 + a + 2 b {{\partial g\left( {a,b} \right)} \over {\partial a}} = 2 + b + {2 \over 3}a,{{\partial g\left( {a,b} \right)} \over {\partial b}} = 2 + a + 2b ag(a,b)=2+b+32abg(a,b)=2+a+2b
并设上面的式子分别为0,得到 a = − 6 , b = 2 a=-6,b=2 a=6,b=2
B = ∂ g ( a , b ) ∂ a ∂ b = 1 , A = ∂ 2 g ( a , b ) ∂ a 2 = 2 3 , C = ∂ 2 g ( a , b ) ∂ b 2 = 2 B = {{\partial g\left( {a,b} \right)} \over {\partial a\partial b}} = 1,A = {{{\partial ^2}g\left( {a,b} \right)} \over {\partial {a^2}}} = {2 \over 3} ,C = {{{\partial ^2}g\left( {a,b} \right)} \over {\partial {b^2}}} = 2 B=abg(a,b)=1,A=a22g(a,b)=32,C=b22g(a,b)=2
此时 A C − B 2 > 0 AC-B^2>0 ACB2>0 A > 0 A>0 A>0 g ( − 6 , 2 ) g(-6,2) g(6,2)为极小值,则
∫ 0 1 f 2 ( x ) d x ≥ max ⁡ [ − g ( a , b ) ] = − min ⁡ g ( a , b ) = − g ( − 6 , 2 ) = 4. \int_0^1 {{f^2}\left( x \right)dx} \ge \max \left[ { - g\left( {a,b} \right)} \right] = - \min g\left( {a,b} \right) = - g\left( { - 6,2} \right) = 4. 01f2(x)dxmax[g(a,b)]=ming(a,b)=g(6,2)=4.

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Oliver_xiaofengfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值