考研数学精选题目016

题目

∫ x 4 x 6 + 1 d x \int {{{{x^4}} \over {{x^6} + 1}}dx} x6+1x4dx

来源

魏姐姐的积木法

思考

在做积分题时,若遇到不会积分的,我们可以考虑先积简单(形式和原式一样)的积分:

∫ x 6 + 1 x 6 + 1 d x = x + C ( 1 ) \int {{{{x^6} + 1} \over {{x^6} + 1}}dx} = x + C(1) x6+1x6+1dx=x+C(1)
∫ x 5 x 6 + 1 d x = 1 6 ln ⁡ ( x 6 + 1 ) + C ( 2 ) \int {{{{x^5}} \over {{x^6} + 1}}dx} = {1 \over 6}\ln \left( {{x^6} + 1} \right) + C(2) x6+1x5dx=61ln(x6+1)+C(2)
∫ x 2 x 6 + 1 d x = ∫ x 2 ( x 3 ) 2 + 1 d x = 1 3 arctan ⁡ x 3 + C ( 3 ) \int {{{{x^2}} \over {{x^6} + 1}}dx} = \int {{{{x^2}} \over {{{\left( {{x^3}} \right)}^2} + 1}}dx} = {1 \over 3}\arctan {x^3} + C(3) x6+1x2dx=(x3)2+1x2dx=31arctanx3+C(3)
至此,我们已经得到了三块积木: x 6 + 1 、 x 5 、 x 2 {{x^6} + 1}、x^5、x^2 x6+1x5x2,接着思考,分母我们可以看作立方和: x 6 + 1 = ( x 2 ) 3 + 1 = ( x 2 + 1 ) ( x 4 − x 2 + 1 ) {x^6} + 1 = {\left( {{x^2}} \right)^3} + 1 = \left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right) x6+1=(x2)3+1=(x2+1)(x4x2+1)我们可以得到: ∫ x 4 − x 2 + 1 x 6 + 1 d x = ∫ 1 x 2 + 1 d x = arctan ⁡ x + C ( 4 ) \int {{{{x^4} - {x^2} + 1} \over {{x^6} + 1}}dx} = \int {{1 \over {{x^2} + 1}}dx} = \arctan x + C(4) x6+1x4x2+1dx=x2+11dx=arctanx+C(4)我们知道 ∫ x 2 + 1 x 4 − x 2 + 1 d x = ∫ 1 + 1 x 2 x 2 − 1 + 1 x 2 d x = ∫ d ( x − 1 x ) ( x − 1 x ) 2 + 1 = arctan ⁡ ( x − 1 x ) + C \int {{{{x^2} + 1} \over {{x^4} - {x^2} + 1}}dx} = \int {{{1 + {1 \over {{x^2}}}} \over {{x^2} - 1 + {1 \over {{x^2}}}}}dx} = \int {{{d\left( {x - {1 \over x}} \right)} \over {{{\left( {x - {1 \over x}} \right)}^2} + 1}} = \arctan \left( {x - {1 \over x}} \right)} + C x4x2+1x2+1dx=x21+x211+x21dx=(xx1)2+1d(xx1)=arctan(xx1)+C ∫ x 2 − 1 x 4 − x 2 + 1 d x = ∫ 1 − 1 x 2 x 2 − 1 + 1 x 2 d x = ∫ d ( x + 1 x ) ( x + 1 x ) 2 − 3 = 1 2 3 ln ⁡ ∣ x + 1 x − 3 x + 1 x + 3 ∣ + C \int {{{{x^2} - 1} \over {{x^4} - {x^2} + 1}}dx} = \int {{{1 - {1 \over {{x^2}}}} \over {{x^2} - 1 + {1 \over {{x^2}}}}}dx} = \int {{{d\left( {x + {1 \over x}} \right)} \over {{{\left( {x + {1 \over x}} \right)}^2} - 3}} = {1 \over {2\sqrt 3 }}\ln \left| {{{x + {1 \over x} - \sqrt 3 } \over {x + {1 \over x} + \sqrt 3 }}} \right|} + C x4x2+1x21dx=x21+x211x21dx=(x+x1)23d(x+x1)=23 1ln x+x1+3 x+x13 +C我们对上面两个式子分子分母同乘 x 2 + 1 x^2+1 x2+1,即可得到 ∫ x 4 + 2 x 2 + 1 x 6 + 1 d x = ∫ ( x 2 + 1 ) ( x 2 + 1 ) ( x 4 − x 2 + 1 ) ( x 2 + 1 ) d x = ∫ x 2 + 1 x 4 − x 2 + 1 d x = ∫ 1 + 1 x 2 x 2 − 1 + 1 x 2 d x = ∫ d ( x − 1 x ) ( x − 1 x ) 2 + 1 = arctan ⁡ ( x − 1 x ) + C ( 5 ) \int {{{{x^4} + 2{x^2} + 1} \over {{x^6} + 1}}dx} = \int {{{\left( {{x^2} + 1} \right)\left( {{x^2} + 1} \right)} \over {\left( {{x^4} - {x^2} + 1} \right)\left( {{x^2} + 1} \right)}}dx} = \int {{{{x^2} + 1} \over {{x^4} - {x^2} + 1}}dx} = \int {{{1 + {1 \over {{x^2}}}} \over {{x^2} - 1 + {1 \over {{x^2}}}}}dx} = \int {{{d\left( {x - {1 \over x}} \right)} \over {{{\left( {x - {1 \over x}} \right)}^2} + 1}} = \arctan \left( {x - {1 \over x}} \right)} + C(5) x6+1x4+2x2+1dx=(x4x2+1)(x2+1)(x2+1)(x2+1)dx=x4x2+1x2+1dx=x21+x211+x21dx=(xx1)2+1d(xx1)=arctan(xx1)+C(5) ∫ x 4 − 1 x 6 + 1 d x = ∫ ( x 2 − 1 ) ( x 2 + 1 ) ( x 4 − x 2 + 1 ) ( x 2 + 1 ) d x = ∫ x 2 − 1 x 4 − x 2 + 1 d x = ∫ 1 − 1 x 2 x 2 − 1 + 1 x 2 d x = ∫ d ( x + 1 x ) ( x + 1 x ) 2 − 3 = 1 2 3 ln ⁡ ∣ x + 1 x − 3 x + 1 x + 3 ∣ + C ( 6 ) \int {{{{x^4} - 1} \over {{x^6} + 1}}dx} = \int {{{\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)} \over {\left( {{x^4} - {x^2} + 1} \right)\left( {{x^2} + 1} \right)}}dx} = \int {{{{x^2} - 1} \over {{x^4} - {x^2} + 1}}dx} = \int {{{1 - {1 \over {{x^2}}}} \over {{x^2} - 1 + {1 \over {{x^2}}}}}dx} = \int {{{d\left( {x + {1 \over x}} \right)} \over {{{\left( {x + {1 \over x}} \right)}^2} - 3}} = {1 \over {2\sqrt 3 }}\ln \left| {{{x + {1 \over x} - \sqrt 3 } \over {x + {1 \over x} + \sqrt 3 }}} \right|} + C(6) x6+1x41dx=(x4x2+1)(x2+1)(x21)(x2+1)dx=x4x2+1x21dx=x21+x211x21dx=(x+x1)23d(x+x1)=23 1ln x+x1+3 x+x13 +C(6)
至此我们一共得到了六块积木: x 6 + 1 、 x 5 、 x 2 、 x 4 − x 2 + 1 、 x 4 + 2 x 2 + 1 、 x 4 − 1 {{x^6} + 1}、x^5、x^2、x^4-x^2+1、{{x^4} + 2{x^2} + 1}、{{x^4} - 1} x6+1x5x2x4x2+1x4+2x2+1x41,我们接着搭积木,将这些积木组合为分子 x 4 x^4 x4 x 4 = 1 2 ( x 4 − 1 ) + 1 2 ( x 4 − x 2 + 1 ) + 1 2 x 2 {x^4} = {1 \over 2}\left( {{x^4} - 1} \right) + {1 \over 2}\left( {{x^4} - {x^2} + 1} \right) + {1 \over 2}{x^2} x4=21(x41)+21(x4x2+1)+21x2这里我们只展示这一种,当然还有很多种组合方法,读者可以自行尝试。

证明

∫ x 4 x 6 + 1 d x = ∫ 1 2 ( x 4 − 1 ) + 1 2 ( x 4 − x 2 + 1 ) + 1 2 x 2 x 6 + 1 d x = 1 2 ∫ x 4 − 1 x 6 + 1 d x + 1 2 ∫ x 4 − x 2 + 1 x 6 + 1 d x + 1 2 ∫ x 2 x 6 + 1 d x = 1 4 3 ln ⁡ ∣ x 2 + 1 − 3 x x 2 + 1 + 3 x ∣ + 1 2 arctan ⁡ x + 1 6 arctan ⁡ x 3 + C \int {{{{x^4}} \over {{x^6} + 1}}dx} = \int {{{{1 \over 2}\left( {{x^4} - 1} \right) + {1 \over 2}\left( {{x^4} - {x^2} + 1} \right) + {1 \over 2}{x^2}} \over {{x^6} + 1}}dx} = {1 \over 2}\int {{{{x^4} - 1} \over {{x^6} + 1}}dx} + {1 \over 2}\int {{{{x^4} - {x^2} + 1} \over {{x^6} + 1}}} dx + {1 \over 2}\int {{{{x^2}} \over {{x^6} + 1}}} dx = {1 \over {4\sqrt 3 }}\ln \left| {{{{x^2} + 1 - \sqrt 3 x} \over {{x^2} + 1 + \sqrt 3 x}}} \right| + {1 \over 2}\arctan x + {1 \over 6}\arctan {x^3} + C x6+1x4dx=x6+121(x41)+21(x4x2+1)+21x2dx=21x6+1x41dx+21x6+1x4x2+1dx+21x6+1x2dx=43 1ln x2+1+3 xx2+13 x +21arctanx+61arctanx3+C

  • 29
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Oliver_xiaofengfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值