考研数学精选题目004

题目

∫ 0 + ∞ e − x ( ∣ sin ⁡ x ∣ + ∣ cos ⁡ x ∣ ) d x = _ _ _ _ _ _ . \int_0^{{\rm{ + }}\infty } {{e^{ - x}}(\left| {\sin x} \right| + \left| {\cos x} \right|)dx = \_\_\_\_\_\_.} 0+ex(sinx+cosx)dx=______.

来源

改编题

证明

I = ∫ 0 + ∞ e − x ( ∣ sin ⁡ x ∣ + ∣ cos ⁡ x ∣ ) d x , I = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}(\left| {\sin x} \right| + \left| {\cos x} \right|)dx}, I=0+ex(sinx+cosx)dx, I I I分为两部分求解, I 1 = ∫ 0 + ∞ e − x ∣ sin ⁡ x ∣ d x , {I_1} = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\sin x} \right|dx}, I1=0+exsinxdx, I 2 = ∫ 0 + ∞ e − x ∣ cos ⁡ x ∣ d x , {I_2} = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\cos x} \right|dx} , I2=0+excosxdx,

方法一

I 1 = ∫ 0 + ∞ e − x ∣ sin ⁡ x ∣ d x = ∑ k = 0 ∞ ∫ k π ( k + 1 ) π e − x ∣ sin ⁡ x ∣ d x = ∑ k = 0 ∞ ∫ 0 π e − ( x + k π ) ∣ sin ⁡ ( x + k π ) ∣ d x = ∑ k = 0 ∞ e − k π ∫ 0 π e − x sin ⁡ x d x = 1 2 ⋅ 1 + e − π 1 − e − π {I_1} = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\sin x} \right|dx} {\rm{ = }}\sum\limits_{k = 0}^\infty {\int_{k\pi }^{(k + 1)\pi } {{e^{ - x}}\left| {\sin x} \right|dx} } = \sum\limits_{k = 0}^\infty {\int_0^\pi {{e^{ - (x + k\pi )}}\left| {\sin (x + k\pi )} \right|dx} } = \sum\limits_{k = 0}^\infty {{e^{ - k\pi }}\int_0^\pi {{e^{ - x}}\sin xdx} } = {1 \over 2} \cdot {{1 + {e^{ - \pi }}} \over {1 - {e^{ - \pi }}}} I1=0+exsinxdx=k=0(k+1)πexsinxdx=k=00πe(x+)sin(x+)dx=k=0e0πexsinxdx=211eπ1+eπ

∫ 0 π e − x sin ⁡ x d x \int_0^\pi {{e^{ - x}}\sin xdx} 0πexsinxdx利用分部积分求解,具体过程自行计算。

I 2 = ∫ 0 + ∞ e − x ∣ cos ⁡ x ∣ d x = ∑ k = 0 ∞ ∫ k π ( k + 1 ) π e − x ∣ cos ⁡ x ∣ d x = ∑ k = 0 ∞ ∫ 0 π e − ( x + k π ) ∣ cos ⁡ ( x + k π ) ∣ d x = ∑ k = 0 ∞ e − k π ∫ 0 π e − x ∣ cos ⁡ x ∣ d x = 1 1 − e − π ⋅ ( 1 e π 2 + 1 2 − 1 2 e π ) {I_2} = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\cos x} \right|dx} {\rm{ = }}\sum\limits_{k = 0}^\infty {\int_{k\pi }^{(k + 1)\pi } {{e^{ - x}}\left| {\cos x} \right|dx} } = \sum\limits_{k = 0}^\infty {\int_0^\pi {{e^{ - (x + k\pi )}}\left| {\cos (x + k\pi )} \right|dx} } = \sum\limits_{k = 0}^\infty {{e^{ - k\pi }}\int_0^\pi {{e^{ - x}}\left| {\cos x} \right|dx} } = {1 \over {1 - {e^{ - \pi }}}} \cdot \left( {{1 \over {{e^{{\pi \over 2}}}}} + {1 \over 2} - {1 \over {2{e^\pi }}}} \right) I2=0+excosxdx=k=0(k+1)πexcosxdx=k=00πe(x+)cos(x+)dx=k=0e0πexcosxdx=1eπ1(e2π1+212eπ1)

∫ 0 π e − x ∣ cos ⁡ x ∣ d x = ∫ 0 π 2 e − x cos ⁡ x d x − ∫ π 2 π e − x cos ⁡ x d x = 1 e π 2 + 1 2 − 1 2 e π \int_0^\pi {{e^{ - x}}\left| {\cos x} \right|dx} = \int_0^{{\pi \over 2}} {{e^{ - x}}\cos xdx} - \int_{{\pi \over 2}}^\pi {{e^{ - x}}\cos xdx} = {1 \over {{e^{{\pi \over 2}}}}} + {1 \over 2} - {1 \over {2{e^\pi }}} 0πexcosxdx=02πexcosxdx2ππexcosxdx=e2π1+212eπ1

方法二:先做平移后计算

I 1 = ∫ 0 + ∞ e − x ∣ sin ⁡ x ∣ d x = ∫ π + ∞ e − ( x − π ) ∣ sin ⁡ ( x − π ) ∣ d x = e π ∫ π + ∞ e − x ∣ sin ⁡ x ∣ d x = e π ( ∫ 0 + ∞ e − x ∣ sin ⁡ x ∣ d x − ∫ 0 π e − x ∣ sin ⁡ x ∣ d x ) = 1 2 ⋅ 1 + e − π 1 − e − π {I_1} = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\sin x} \right|dx} {\rm{ = }}\int_\pi ^{{\rm{ + }}\infty } {{e^{ - (x - \pi )}}\left| {\sin (x - \pi )} \right|dx} = {e^\pi }\int_\pi ^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\sin x} \right|dx} = {e^\pi }\left( {\int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\sin x} \right|dx} - \int_0^\pi {{e^{ - x}}\left| {\sin x} \right|dx} } \right) = {1 \over 2} \cdot {{1 + {e^{ - \pi }}} \over {1 - {e^{ - \pi }}}} I1=0+exsinxdx=π+e(xπ)sin(xπ)dx=eππ+exsinxdx=eπ(0+exsinxdx0πexsinxdx)=211eπ1+eπ
I 2 = ∫ 0 + ∞ e − x ∣ cos ⁡ x ∣ d x = ∫ π + ∞ e − ( x − π ) ∣ cos ⁡ ( x − π ) ∣ d x = e π ∫ π + ∞ e − x ∣ cos ⁡ x ∣ d x = e π ( ∫ 0 + ∞ e − x ∣ cos ⁡ x ∣ d x − ∫ 0 π e − x ∣ cos ⁡ x ∣ d x ) = 1 1 − e − π ⋅ ( 1 e π 2 + 1 2 − 1 2 e π ) {I_2} = \int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\cos x} \right|dx} {\rm{ = }}\int_\pi ^{{\rm{ + }}\infty } {{e^{ - (x - \pi )}}\left| {\cos (x - \pi )} \right|dx} = {e^\pi }\int_\pi ^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\cos x} \right|dx} = {e^\pi }\left( {\int_0^{{\rm{ + }}\infty } {{e^{ - x}}\left| {\cos x} \right|dx} - \int_0^\pi {{e^{ - x}}\left| {\cos x} \right|dx} } \right) = {1 \over {1 - {e^{ - \pi }}}} \cdot \left( {{1 \over {{e^{{\pi \over 2}}}}} + {1 \over 2} - {1 \over {2{e^\pi }}}} \right) I2=0+excosxdx=π+e(xπ)cos(xπ)dx=eππ+excosxdx=eπ(0+excosxdx0πexcosxdx)=1eπ1(e2π1+212eπ1)
∴ I = I 1 + I 2 = e π e π − 1 ( 1 + 1 e π 2 ) . \therefore I = {I_1} + {I_2} = {{{e^\pi }} \over {{e^\pi } - 1}}\left( {1 + {1 \over {{e^{{\pi \over 2}}}}}} \right). I=I1+I2=eπ1eπ(1+e2π1).

注:

若连续函数满足
f ( t ) = f ( t + T ) ⇒ ∫ 0 + ∞ f ( t ) e − s t d t = 1 1 − e − s T ∫ 0 T f ( t ) e − s t d t . f(t) = f(t + T) \Rightarrow \int_0^{ + \infty } {f(t){e^{ - st}}dt = {1 \over {1 - {e^{ - sT}}}}} \int_0^T {f(t){e^{ - st}}dt.} f(t)=f(t+T)0+f(t)estdt=1esT10Tf(t)estdt.

  • 25
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Oliver_xiaofengfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值