YOLOv5全面解析教程②:如何制作训练效果更好的数据集

本文介绍了如何制作适用于YOLOv5目标检测模型的高质量数据集,包括数据集结构解析、标注工具LabelImg的使用、好的数据集标准以及相关资源链接。强调了多样化图像、标签准确性和一致性的重要性。
摘要由CSDN通过智能技术生成

f4ca351313bddc285843a7023c0e5bec.jpeg

撰文 | Fengwen, BBuf

本文主要介绍 One-YOLOv5 使用的数据集格式以及如何制作一个可以获得更好训练效果的数据集。本节教程的数据集标准部分翻译了 Ultralytics/YOLOv5 wiki 中对数据集相关的描述(https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) 。

代码仓库地址:

https://github.com/Oneflow-Inc/one-yolov5

本系列教程原文点击 

https://start.oneflow.org/oneflow-yolo-doc可达(保持动态更新教程和源码解读和修复一些bug)。

1

数据集结构解读

1. 创建dataset.yaml

COCO128是官方给的一个小的数据集 由COCO(https://cocodataset.org/#home)数据集前 128 张图片组成。这128幅图像用于训练和验证,判断 YOLOv5 脚本是否能够过正常进行。

数据集配置文件 coco128.yaml 

(https://github.com/Oneflow-Inc/one-yolov5/blob/master/data/coco128.yaml) 定义了如下的配置选项:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── one-yolov5
# └── datasets
#     └── coco128  ← downloads here (7 MB)


# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]


# 训练和验证图像的路径相同
train: ../coco128/images/train2017/ 
val: ../coco128/images/train2017/


# number of classes
nc: 80 # 类别数


# class names 类名列表
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'bo
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值