姿态估计(Pose Estimation)是计算机视觉中的一项关键技术,目标是检测图像或视频中人体的主要关键点(关节),从而推断出人体的姿态。简而言之,它让计算机能够理解一个人是站着、蹲着、抬手,还是在跳跃、奔跑等。
一、什么是“姿态”?
在视觉中,“姿态”通常指的是人体或物体的结构性空间位置,比如:
-
人体的头部、肩膀、肘部、膝盖等关键点的位置
-
每个关键点之间的连接关系(骨架)
-
人体的朝向、动作状态等
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
二、姿态估计的类型
✅ 1. 2D 姿态估计
-
输出:图像中的人体关键点在 二维平面上的坐标。
-
应用:手势识别、动作分析、AR 滤镜等。
✅ 2. 3D 姿态估计
-
输出:关键点在三维空间中的坐标(x, y, z)。
-
应用:虚拟现实、动画捕捉、高精度运动分析等。
✅ 3. 单人姿态估计
-
图像中只有一个人,任务是检测该人的关键点。
✅ 4. 多人姿态估计
-
图像或视频中有多个不同的人,需要识别出每个人的姿态,并区分他们。
三、人体关键点示意图(2D 常见)
一般会估计 14~25 个关键点,常见包括:
头部:头顶、鼻子、眼睛、耳朵 上肢:肩膀、手肘、手腕 下肢:臀部、膝盖、脚踝 身体中心:颈部、脊椎、髋部
四、常用方法与模型
方法 | 特点 |
---|---|
OpenPose | 开源的多人姿态估计系统,基于 Part Affinity Fields |
HRNet | 高精度模型,保持高分辨率特征 |
AlphaPose | 快速、精度高的多人姿态估计模型 |
BlazePose | Google 提出的轻量级姿态估计模型,适合移动端 |
PoseFormer / VideoPose3D | 基于 Transformer 的 3D 姿态估计 |
五、技术流程简要
-
人体检测:先在图像中找到人体的位置(通常用目标检测算法)。
-
关键点检测:在每个人体框中预测各个关节的位置。
-
骨架构建:将关键点连接,形成人体骨架结构。
-
姿态追踪(视频):跨帧跟踪人体姿态的变化,进行动态分析。
六、应用场景
-
🧍♀️ 健身与动作纠正:检测锻炼动作是否标准
-
🧘♂️ 运动医学:康复训练姿势评估
-
🎮 游戏与虚拟现实:体感控制、全身追踪
-
📹 视频行为分析:结合行为检测识别复杂动作
-
👮♂️ 安防监控:摔倒检测、异常动作识别
-
🧤 手势识别:用于控制设备或人机交互
七、总结
姿态估计让计算机能够识别人类身体的结构和动态姿势,是连接视觉感知和行为理解的重要桥梁。相比传统目标检测,姿态估计提供的是更加细粒度的信息,能够实现对人类行为、运动的深入分析。随着深度学习特别是轻量级模型与3D建模的发展,姿态估计正广泛应用于健身、医疗、AR/VR、安防等各类场景,使得“让机器看懂人”成为可能。