计算机视觉是让计算机“看懂”图片和视频的技术,应用广泛,比如人脸识别、自动驾驶、安防监控等。听起来复杂,其实入门门槛并不高,关键是学好基础知识,掌握核心技术,结合大量实践。
✅ 零基础学计算机视觉需要准备什么?
1. 掌握 Python 编程基础
Python 是计算机视觉领域最常用的语言。先熟悉Python基础语法、数据结构、函数写法、文件操作等。
-
推荐资源:《Python编程入门》《菜鸟教程》《LeetCode简单题》
2. 了解基础数学知识
计算机视觉涉及图像矩阵、几何变换、概率统计等,建议掌握:
-
线性代数(矩阵与向量运算)
-
几何基础(坐标变换、透视变换)
-
基础概率统计(理解图像噪声、模型不确定性)
这些知识能帮助你理解图像处理和深度学习的核心算法。
免费分享一套人工智能+大模型入门学习资料给大家,如果想自学,这套资料很全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
3. 学习计算机视觉核心概念
-
图像的数字化表示(像素、通道、分辨率)
-
常见图像处理技术(滤波、边缘检测、形态学操作)
-
深度学习在视觉中的应用(卷积神经网络CNN)
🛠 学习步骤推荐
阶段 | 内容重点 | 推荐工具/资源 |
---|---|---|
基础入门(1-2月) | Python编程+数学基础 | Jupyter、B站数学和Python入门课程 |
图像处理基础(1月) | OpenCV基础操作、图像读写与处理 | OpenCV官方文档、实战视频教程 |
深度学习入门(2-3月) | 卷积神经网络(CNN)、目标检测基础 | PyTorch或TensorFlow入门教程 |
实战项目(持续) | 手写数字识别、图像分类、人脸检测 | MNIST、CIFAR-10数据集、公开项目 |
💡 学习建议
-
先学图像处理基础,再学深度学习
理解图像的本质和基本变换,对后续学习CNN等非常重要。 -
项目实践是关键
用开源数据集训练模型,调参和测试,才能真正理解技术。 -
多看开源代码和教程
GitHub 和社区有很多计算机视觉经典项目和实用代码。 -
不断复习和总结
视觉算法复杂,多练多问是掌握的必经之路。
总结
零基础入门计算机视觉,只要打好编程和数学基础,理解图像处理核心,再结合深度学习技术,一步步练习项目,完全可以掌握。计算机视觉技术正在高速发展,未来有广阔的应用前景。