3.4数据预处理(四) - 数据转换(Data Transform)

本文介绍了数据预处理中的重要步骤——数据转换,包括数据标准化、离散化和泛化。数据标准化通过最大最小标准化、Z-Score标准化和小数定标标准化等方法使数据落在特定区间;数据离散化利用分箱、直方图、聚类和相关度离散化技术将连续数据转换为类别;数据泛化则是将底层数据抽象到更高层次的概念。这些转换有助于提高模型的处理效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

数据经过集成、清理与规约等步骤后,我们很可能要将数据进行标准化、离散化、分层化。这些方法有些能够提高模型拟合的程度,有些能够使得原始属性被更抽象或更高层次的概念代替。这些方法统一可以称为数据转换(Data Transform)。

一句话解释版本:

数据转换就是通过标准化、离散化与分层化让数据变得更加一致,更加容易被模型处理。

 

数据分析与挖掘体系位置

数据转换是有数据预处理中的一个过程。所以其在数据分析与数据挖掘中的位置如下图所示。

 

数据转换的方法

数据转换的方法有下面三种:

  • 数据标准化(Data Standardization):将数据按比例缩放,使数据都落在一个特定的区间。
  • 数据离散化(Data Discretization):将数据用区间或者类别的概念替换。
  • 数据泛化(D
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值