4.3.1有监督学习(五) - 支持向量机(SVM - Support Vector Machine)

简介支持向量机(Support Vector Machine,SVM)是一种有监督学习中的分类器。它适合小样本、非线性以及高维度的分割。SVM通过选择不同的核函数来构造不同的模型,并构建不同的分割器。例如,核函数为线性函数时,SVM等同于线性回归;核函数为Sigmoid时,SVM等价于神经网络。一句话解释版本:SVM通过非线性转换升维数据,实现线性可分;通过最大化边界,寻找最优分割器。...
摘要由CSDN通过智能技术生成

简介

支持向量机(Support Vector Machine,SVM)是一种有监督学习中的分类器。它适合小样本、非线性以及高维度的分割。SVM通过选择不同的核函数来构造不同的模型,并构建不同的分割器。例如,核函数为线性函数时,SVM等同于线性回归;核函数为Sigmoid时,SVM等价于神经网络。

一句话解释版本:

SVM通过非线性转换升维数据,实现线性可分;通过最大化边界,寻找最优分割器。

数据分析与挖掘体系位置

SVM是有监督学习中的一种模型。所以在数据分析与数据挖掘中的位置如下图所示。

SVM的原理

简单来说,SVM的原理是两个字:升维。

假定我们有一张纸,上面有红点与黑点,红点与黑点交错分布在纸上。我们现在想在纸上画一条线,把红黑两种颜色的点区分开来。这是比较难的。但是,SVM提供了一个办法:我们把纸拿起来,卷成一个圈,将纸从二维空间升高到三维空间。这时,可能就会有一个面,我们通过这个面实现了分割原本在二维空间线性不可分的红黑点。这个就是SVM较容易理解的原理。

当原始数据线性不可分时,通过使用非线性转换(Nonlinear Transformation)将原始数据映射(Mapping)在高维度的特征空间中。这时,由于在特征空间进行了坐标转化,原本线性不可分的数据在更高维度上就变成了线性可分。这个过程类似神经网络中从输入层到隐藏层的映射过程。

在数据转换到高维后,SVM的目的就是找出Optimal Linear Seperating Hyperplane,也就是最优线性分割超平面,用它来分隔数据。这个Hyperplane也被称为Decision Boundary,即决策边界。
 

SVM的构建

既然SVM是通过将数据升维,进而寻找最优超平面以分割数据。

那么,很自然的,成功构建SVM就需要解决两个核心问题:

  1. 如何定义“最优”的超平面。
  2. 如何对数据升维。

问题1:“最优”超平面的定义

当分割超平面有多个时,最优分割超平面是能够输出最大边界(Margin)的超平面。

首先,超平面(Hyperplane)是什么?如果是二维空间,超平面就是一条线;如果是三维空

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值