机器学习——SVM支持向量机实验

本实验介绍了如何使用支持向量机进行线性与非线性分类,以及如何通过交叉验证选择最优参数。首先,实现线性SVM对ex2data1.mat数据集进行分类,然后定义并应用高斯核,解决ex2data2.mat中的非线性问题。接着,通过交叉验证在ex2data3.mat数据集上找到最佳的高斯核参数。最后,将线性和高斯核SVM应用于UCI手写体数字识别数据集,比较两者识别效果。
摘要由CSDN通过智能技术生成

实验2:支持向量机


介绍

在本实验中,将使用支持向量机(Support Vector Machine, SVM)并了解其在数据上的工作原理。
本次实验需要用到的数据集包括:

引入所需要的库文件

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
import os
%matplotlib inline

1 线性SVM

在该部分实验中,将实现线性SVM分类并将其应用于数据集1。

raw_data = loadmat('ex2data1.mat')
data = pd.DataFrame(raw_data.get('X'), columns=['X1', 'X2'])
data['y'] = raw_data.get('y')

data.head()

定义数据可视化函数

def plot_init_data(data, fig, ax):
    positive = data[data['y'].isin([1])]
    negative = data[data['y'].isin([0])]

    ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
    ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')

数据可视化

fig, ax = plt.subplots(figsize=(9,6))
plot_init_data(data, fig, ax)
ax.legend()
plt.show()

要点 1:
本部分的任务为使用线性SVM于数据集1:ex2data1.mat 可调用sklearn库实现SVM功能。

from sklearn import svm
 在这里填入代码 
svc = svm.SVC()
定义可视化分类边界函数
def find_decision_boundary(svc, x1min, x1max, x2min, x2max, diff):
    x1 = np.linspace(x1min, x1max, 1000)
    x2 = np.linspace(x2min, x2max, 1000)

    cordinates = [(x, y) for x in x1 for y in x2]
    x_cord, y_cord = zip(*cordinates)
    c_val = pd.DataFrame({'x1':x_cord, 'x2':y_cord})
    c_val['cval'] = svc.decision_function(c_val[['x1', 'x2']])

    decision = c_val[np.abs(c_val['cval']) < diff]
    
    return decision.x1, decision.x2
显示分类决策面
x1, x2 = find_decision_boundary(svc, 0, 4, 1.5, 5, 2 * 10**-3)
fig, ax = plt.subplots(figsize=(9,6))
ax.scatter(x1, x2, s=10, c='r',label='Boundary')
plot_init_data(data, fig, ax)
ax.set_title('SVM (C=1) Decision Boundary')
ax.legend()
plt.show()
尝试C=100
svc2 = svm.LinearSVC(C=100, loss='hinge', max_iter=1000)
svc2.fit(data[['X1', 'X2']], data['y'])
svc2.score(data[['X1', 'X2']], data['y'])
显示分类决策面
x1, x2 = find_decision_boundary(svc2, 0, 4, 1.5, 5, 2 * 10**-3)
fig, ax = plt.subplots(figsize=(9,6))
ax.scatter(x1, x2, s=10, c='r',label='Boundary')
plot_init_data(data, fig, ax)
ax.set_title('SVM (C=100) Decision Boundary')
ax.legend()
plt.show()

2 高斯核 SVM

在本部分实验中,将利用核SVM实现非线性分类任务。

2.1 高斯核

对于两个样本 x 1 , x 2 ∈ R d \mathbf{x}_1, \mathbf{x}_2\in \mathbb{R}^d x1,x2Rd,其高斯核定义为

K gaussian ( x 1 , x 2 ) = exp ⁡ ( − ∥ x 1 − x 2 ∥ 2 2 2 σ 2 ) K_{\text{gaussian}} \left( \mathbf{x}_1, \mathbf{x}_2 \right) = \exp \left( - \frac{\left\|\mathbf{x}_1 -\mathbf{x}_2 \right\|_2^2}{2\sigma^2} \right) Kgaussian(x1,x2)=exp(2σ2x1x222)

要点 2:
本部分的任务为按照上述公式实现高斯核函数的定义。

def gaussianKernel(x1, x2, sigma):
    """
    定义高斯核.
    
    输入参数
    ----------
    x1 :  第一个样本点,大小为(d,1)的向量
    
    x2 :  第二个样本点,大小为(d,1)的向量
    
    sigma : 高斯核的带宽参数

    输出结果
    -------
    sim : 两个样本的相似度 (similarity)。
    
    """
 在这里填入代码 
 
    return sim

如果完成了上述的高斯核函数 gaussianKernel,以下代码可用于测试。如果结果为0.324652,则计算通过。

#测试高斯核函数
x1 = np.array([1, 2, 1])
x2 = np.array([0, 4, -1])
sigma = 2

sim = gaussianKernel(x1, x2, sigma)

print('Gaussian Kernel between x1  and x2 is :', sim)

2.2 高斯核SVM应用于数据集2

在本部分实验中,将高斯核SVM应用于数据集2:ex2data2.mat

raw_data = loadmat('ex2data2.mat')

data = pd.DataFrame(raw_data['X'], columns=['X1', 'X2'])
data['y'] = raw_data['y']

fig, ax = plt.subplots(figsize=(9,6))
plot_init_data(data, fig, ax)
ax.legend()
plt.show()

从上图中可看出,上述两类样本是线性不可分的。需要采用核SVM进行分类。

要点 3:
本部分的任务为使用高斯核SVM于数据集2。 可调用sklearn库实现非线性SVM功能。

这里填写代码

x1, x2 = find_decision_boundary(svc, 0, 1, 0.4, 1, 0.01)
fig, ax = plt.subplots(figsize=(9,6))
plot_init_data(data, fig, ax)
ax.scatter(x1, x2, s=10)
plt.show()

3 交叉验证高斯核 SVM

在本部分实验中,将通过交叉验证方法选择高斯核SVM的最优参数 C C C σ \sigma σ,并将其应用于数据集3:ex2data3.mat
该数据集包含训练样本集X(训练样本特征), y(训练样本标记)和验证集 Xval(验证样本特征), yval(验证样本标记)。

raw_data = loadmat('ex2data3.mat')

X = raw_data['X']
Xval = raw_data['Xval']
y = raw_data['y'].ravel()
yval = raw_data['yval'].ravel()

fig, ax = plt.subplots(figsize=(9,6))
data = pd.DataFrame(raw_data.get('X'), columns=['X1', 'X2'])
data['y'] = raw_data.get('y')
plot_init_data(data, fig, ax)
plt.show()

3.1 交叉验证选择最优参数 C C C σ \sigma σ

要点 4:
本部分的任务为采用交叉验证方法搜索最优参数 C C C σ \sigma σ 对于 C C C σ \sigma σ,可从以下候选集合中搜索
{ 0.01 , 0.03 , 0.1 , 0.3 , 1 , 3 , 10 , 30 } \left\{0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30\right\} {0.01,0.03,0.1,0.3,1,3,10,30}

C_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
gamma_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]

best_score = 0

# ====================== 在这里填入代码 ======================= 
 
# ============================================================= 

best_C, best_gamma, best_score

3.2 利用已选出的参数和高斯核SVM应用于数据集3

svc = svm.SVC(C=best_C, gamma=best_gamma)
svc.fit(X, y)

x1, x2 = find_decision_boundary(svc, -0.8, 0.3, -0.7, 0.8, 0.005)
fig, ax = plt.subplots(figsize=(9,6))
plot_init_data(data, fig, ax)
ax.scatter(x1, x2, s=5)
plt.show()

4 将 SVM 应用于手写体数字识别

在本部分实验中,将线性SVM和高斯核SVM应用于手写体数据集:UCI ML hand-written digits datasets,并对比识别结果。

# 引入所需要的库文件
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split
# 从sklearn库中下载数据集并展示部分样本
digits = datasets.load_digits()

_, axes = plt.subplots(1, 10) 
images_and_labels = list(zip(digits.images, digits.target))
for ax, (image, label) in zip(axes, images_and_labels[0:10]):
    ax.set_axis_off()
    ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
    ax.set_title(' %i' % label)
plt.show()
#将每个图片样本变成向量
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
# 将原始数据集划分成训练集和测试集(一半训练,另一半做测试)
X_train, X_test, y_train, y_test = train_test_split(
    data, digits.target, test_size=0.5, shuffle=False)#False

要点 5:

本部分的任务为将线性SVM(C=1)和高斯核SVM(gamma=0.001)应用于UCI手写体数据集并输出识别精度。

#将线性SVM应用于该数据集并输出识别结果
# ====================== 在这里填入代码 ======================= 
 
# ============================================================= 

print("Classification accuracy of Linear SVM:", score_Linear)    

#将高斯核SVM应用于该数据集并输出识别结果
# ====================== 在这里填入代码 ======================= 
 
# ============================================================= 

print("Classification accuracy of Gaussian SVM:", score_Gaussian) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值