pytorch requires_grad

情况1

import torch

default_requires_grad = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float)
A = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float, requires_grad = True)
B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
C = A+B
Loss=C**2
#A = A.detach()

print('default_requires_grad:   ',default_requires_grad.requires_grad)
print('A:  ', A.requires_grad)
print('B:  ',B.requires_grad)
print('C:  ',C.requires_grad)
print('Loss:  ',Loss.requires_grad)
#print('A after detach:  ', A.requires_grad)

输出1:

default_requires_grad:    False
A:   True
B:   False
C:   True
Loss:   True

情况2

A = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float, requires_grad = True)
B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
C = A+B
Loss=C**2
A.detach()

print('A:  ', A.requires_grad)
print('B:  ',B.requires_grad)
print('C:  ',C.requires_grad)
print('Loss:  ',Loss.requires_grad)

输出2

A:   True
B:   False
C:   True
Loss:   True

情况3

A = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float, requires_grad = True)
B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
C = A+B
Loss=C**2
A = A.detach()

print('A:  ', A.requires_grad)
print('B:  ',B.requires_grad)
print('C:  ',C.requires_grad)
print('Loss:  ',Loss.requires_grad)

输出3

A:   False
B:   False
C:   True
Loss:   True

情况4

A = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float, requires_grad = True)
B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
C = A+B
Loss=C**2
C = C.detach()

#print('default_requires_grad:   ',default_requires_grad.requires_grad)
print('A:  ', A.requires_grad)
print('B:  ',B.requires_grad)
print('C:  ',C.requires_grad)
print('Loss:  ',Loss.requires_grad)

输出4

A:   True
B:   False
C:   False
Loss:   True

情况5

#default_requires_grad = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float)
A = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float, requires_grad = True)
B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
C = A+B
Loss=C**2
Loss = Loss.detach()

#print('default_requires_grad:   ',default_requires_grad.requires_grad)
print('A:  ', A.requires_grad)
print('B:  ',B.requires_grad)
print('C:  ',C.requires_grad)
print('Loss:  ',Loss.requires_grad)

输出5

A:   True
B:   False
C:   True
Loss:   False

输入 6

A = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float, requires_grad = True)
B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
A = A.detach()

C = A+B
Loss=C**2
Loss = Loss.detach()

#print('default_requires_grad:   ',default_requires_grad.requires_grad)
print('A:  ', A.requires_grad)
print('B:  ',B.requires_grad)
print('C:  ',C.requires_grad)
print('Loss:  ',Loss.requires_grad)

输出6

A:   False
B:   False
C:   False
Loss:   False

输入7

B = torch.tensor([1.,2.,0.,0,-1,3],dtype=torch.float,requires_grad = False)
C = B*B

print(C.requires_grad)

输出7

False
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值