矩阵 A乘A的转置是否一定正定? NO!!!

本文探讨了矩阵ATA的性质,特别是其正定性和半正定性的条件。指出当AAA为方阵且满秩时,ATA为正定;当AAA的行数小于列数时,ATA为半正定;当AAA的行数大于列数时,结果取决于具体矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵 A T A A^{T}A ATA 是否一定正定?NO!

注意,并不要求 A A A 是方阵,记 A A A m × n m\times n m×n 的矩阵。则
x T A T A x = ( A x ) T A x = ∥ A x ∥ 2 ≥ 0 x^{T}A^{T}Ax=(Ax)^{T}Ax= \lVert Ax\rVert^{2} \ge 0 xTATAx=(Ax)TAx=Ax20
其中 x x x n × 1 n\times 1 n×1 的向量, A T A A^{T}A ATA n × n n\times n n×n 的方阵。

由上面的不等式我们知道 A T A A^{T}A ATA 是半正定的。

而且,

  1. 如果 m = n m = n m=n A T A A^{T}A ATA 是正定的当且仅当 A A A 是可逆矩阵(满秩)。
  2. m < n m < n m<n A T A A^{T}A ATA 一定是半正定的。
  3. m > n m >n m>n ,看具体矩阵,可能正定,可能半正定。

附录:

关于 case 1的证明,取

y = A x y=Ax y=Ax

x T A T A x = ( A x ) T A x = y T y x^{T}A^{T}Ax=(Ax)^{T}Ax=y^{T}y xTATAx=(Ax)TAx=yTy
注意一个显而易见的事实, y T y ≥ 0 y^Ty \ge 0 yTy0 永远成立。

y T y = 0 y^Ty=0 yTy=0 意味着 y = 0 ⃗ y=\vec{0} y=0 ,注意 y = A x y=Ax y=Ax,即 A x = 0 ⃗ Ax = \vec{0} Ax=0 ,当 A A A 满秩 该方程才只有唯一零解,得证。

关于 case2 的证明:

由于 r a n k ( A ) ≤ m i n { m , n } = m < n rank(A) \le min\{m,n\}=m<n rank(A)min{m,n}=m<n
y = A x = 0 ⃗ y=Ax= \vec{0} y=Ax=0 方程的基础解系的秩 等于 n − r a n k ( A ) > 0 n-rank(A) >0 nrank(A)>0
所以,存在 非零向量 使得 y = A X = 0 ⃗ y=AX=\vec{0} y=AX=0
这不符合 正定的定义。

<think>嗯,用户想优化或改进他们给出的LMI求解代码。首先,我需要仔细看看他们提供的代码和引用资料。他们的代码是用于求解线性矩阵不等式,可能是在控制理论中的应用,比如论文里提到的安全编队控制。用户提到使用MATLAB自带的求解器,但得到的结果可能不理想,比如无解或者解不符合预期。 首先,检查他们的代码结构。代码里用了lmivar定义矩阵变量P,然后使用lmiterm添加项。最后调用feasp求解。可能的问题点在哪里呢?引用2提到高维LMI容易出现无解,所以可能需要调整参数或约束条件。另外,代码中beta设为3,可能需要调整这个参数,或者尝试不同的beta值来寻找可行解。 接下来,代码里的矩阵A和B是否正确?用户提供的A矩阵看起来是6x6的,但数据可能有问题,比如全是零或部分位置有1,可能对应某个动力学模型。B矩阵转置后的,可能维度是否正确?需要确认矩阵的维度是否匹配,否则LMI项可能不正确。 然后,求解器选项的设置。用户可能没有调整求解器的选项,比如迭代次数、容忍度等。默认设置可能在复杂情况下不够,导致求解失败。比如,feasp的选项可以通过设置options来增加最大迭代次数,或者调整容忍度。 另外,是否有考虑对称性或约束条件?比如,P矩阵是否需要正定?在LMI问题中,通常需要保证P的正定性,但用户代码里没有显式约束。可能需要添加P > 0的条件,比如通过lmiterm来约束P的正定性。 还有,变量的定义是否正确?用户用lmivar(2, [6 6])定义了一个6x6的普通矩阵,但如果需要对称正定矩阵,应该使用类型1。比如,lmivar(1, [6 1]),这样P就是对称的,并且需要正定。这可能是一个关键点,因为很多LMI问题中的矩阵变量需要是对称正定的。如果用户错误地定义为普通矩阵,可能导致问题无解或者结果不正确。 此外,代码中没有错误处理,比如检查tmin是否为负,这是feasp求解器返回可行解的条件。用户可能在得到结果后没有验证解的有效性,导致使用无效的解。需要添加条件判断,如果tmin < 0才认为可行,否则提示无解。 可能还需要数值稳定性方面的优化,比如缩放矩阵元素,避免数值过大或过小,或者分解矩阵变量减少维度。引用3中的代码是否考虑了这些因素? 然后,用户提到的润色代码可能包括代码结构优化,比如添加注释、模块化代码、使用更清晰的变量名,或者将参数设置为可调,便于测试不同的beta值。此外,可能可以尝试不同的求解器,比如mincx或gevp,如果问题适合的话。 总结可能的优化点:1. 正确定义P为对称矩阵;2. 添加P的正定性约束;3. 调整求解器选项;4. 参数beta的调整;5. 增加错误处理和结果验证;6. 数值缩放或问题重构;7. 代码结构和可读性改进。 现在需要将这些点整理成步骤,并参考提供的引用资料。比如引用2提到高维LMI可能无解,但确保程序正确,所以优化代码结构正确性是关键。引用3中的代码可能缺少对称性约束,导致问题无法正确求解。用户可能需要检查矩阵定义是否正确,并添加必要的约束。</think>### 分步解答与代码优化建议 #### 一、原代码问题分析 1. **矩阵类型定义错误** `P = lmivar(2, [6 6])`将矩阵定义为普通矩阵(类型2),而LMI通常要求对称正定矩阵,应使用类型1: ```matlab P = lmivar(1, [6 1]); % 定义对称正定矩阵 ``` 2. **缺少正定性约束** 原代码未显式添加$P > 0$约束,需补充: ```matlab lmiterm([2 1 1 P], 1, 1); % 添加约束 P > 0 ``` 3. **求解器参数未优化** 未调整求解器容差和迭代次数,高维问题易失败[^2]: ```matlab options = [1e-5, 500, 1e8, 5, 1]; % [精度, 最大迭代, 缩放因子, 诊断, 可行性径] ``` #### 二、优化后完整代码 ```matlab clear; clc; % 定义系统矩阵 A = [0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0]; B = [0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1]'; beta = 3; % 调节参数 % LMI定义 setlmis([]); P = lmivar(1, [6 1]); % 对称正定矩阵 % 主LMI项 lmiterm([1 1 1 P], 1, A, 's'); % PA + A'P lmiterm([1 1 1 P], beta, 1); % beta*P lmiterm([1 1 2 P], 1, -B); % -PB lmiterm([1 2 1 0], B'); % B' lmiterm([1 2 2 0], -1); % -I % 正定性约束 lmiterm([-2 1 1 P], 1, 1); % P > 0 % 求解配置 lmis1 = getlmis; options = [1e-5, 500, 1e8, 5, 1]; % 提高迭代次数 [tmin, xfeas] = feasp(lmis1, options); % 结果验证 if tmin < 0 P = dec2mat(lmis1, xfeas, P); eig(P) % 检查正定性 else error('No feasible solution found'); end ``` #### 三、关键优化说明 1. **矩阵类型修正** 将$P$定义为对称正定矩阵(`lmivar(1,...)`),符合LMI问题标准形式[^3] 2. **增强数值稳定性** - 添加$P > 0$约束保证解的有效性 - 通过`options`参数提高求解器容错能力 3. **参数调节建议** - 尝试$\beta \in (0,5)$区间调节(步长0.5) - 使用特征值验证解质量:`eig(P)`应全为正数 4. **高级优化方向** - 对高维问题采用变量分解:$P = P_1 \oplus P_2$ - 使用`mincx`求解器处理带目标函数的优化问题
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值