矩阵 A乘A的转置是否一定正定? NO!!!

矩阵 A T A A^{T}A ATA 是否一定正定?NO!

注意,并不要求 A A A 是方阵,记 A A A m × n m\times n m×n 的矩阵。则
x T A T A x = ( A x ) T A x = ∥ A x ∥ 2 ≥ 0 x^{T}A^{T}Ax=(Ax)^{T}Ax= \lVert Ax\rVert^{2} \ge 0 xTATAx=(Ax)TAx=Ax20
其中 x x x n × 1 n\times 1 n×1 的向量, A T A A^{T}A ATA n × n n\times n n×n 的方阵。

由上面的不等式我们知道 A T A A^{T}A ATA 是半正定的。

而且,

  1. 如果 m = n m = n m=n A T A A^{T}A ATA 是正定的当且仅当 A A A 是可逆矩阵(满秩)。
  2. m < n m < n m<n A T A A^{T}A ATA 一定是半正定的。
  3. m > n m >n m>n ,看具体矩阵,可能正定,可能半正定。

附录:

关于 case 1的证明,取

y = A x y=Ax y=Ax

x T A T A x = ( A x ) T A x = y T y x^{T}A^{T}Ax=(Ax)^{T}Ax=y^{T}y xTATAx=(Ax)TAx=yTy
注意一个显而易见的事实, y T y ≥ 0 y^Ty \ge 0 yTy0 永远成立。

y T y = 0 y^Ty=0 yTy=0 意味着 y = 0 ⃗ y=\vec{0} y=0 ,注意 y = A x y=Ax y=Ax,即 A x = 0 ⃗ Ax = \vec{0} Ax=0 ,当 A A A 满秩 该方程才只有唯一零解,得证。

关于 case2 的证明:

由于 r a n k ( A ) ≤ m i n { m , n } = m < n rank(A) \le min\{m,n\}=m<n rank(A)min{m,n}=m<n
y = A x = 0 ⃗ y=Ax= \vec{0} y=Ax=0 方程的基础解系的秩 等于 n − r a n k ( A ) > 0 n-rank(A) >0 nrank(A)>0
所以,存在 非零向量 使得 y = A X = 0 ⃗ y=AX=\vec{0} y=AX=0
这不符合 正定的定义。

  • 15
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值