很多问题需要树的数据结构解决,如树形DP。这时我们需要一种简单、快速的建树方法
这里介绍一种先读入数据建一棵无根树,再通过深搜进行分层,实现无根树转有根树的方法
数据定义
通过 vector 数组的下标表示起点,也就是父节点。定义
- int v ; 表示终点,也就是儿子节点的概念
- int w ; 表示权值
要改变树的存储类型,首先要改的就是这个
const int MAXN = 1e5 + 10;
const int MOD = 1e9 + 7;
typedef long long ll;
struct edge {
int v; //终点
int w; //权重
};
vector<edge> tree[MAXN];
int N;
建无根树
这里一定要注意:读入双向边
因为现在树是无根的,任何一个节点都有可能成为根节点,无法确定边的方向,所以应该先定义双向边
不用担心会造成树层次的紊乱,只需要在后期深搜的时候加一个判断条件就可以
for (int i = 1; i <= N; i++) tree[i].clear();
int u, v, w;
for (int i = 0; i < N -1; i++) {
scanf("%d%d%d", &u, &v, &w);
edge e1, e2;
e1.v = v;
e1.w = w;
tree[u].push_back(e1);
e2.v = u;
e2.w = w;
tree[v].push_back(e2); //双向边
}
dfs(1, 0);
这个 dfs(1, 0) 就是取了任意一个点最为根节点(这里取的是 1 ),进行深搜实现分层
需要注意的是,函数调用时给根节点取的父节点,不应该是它在这幅图里真的父节点,而只能取 0,否则会缺失树的一部分
无根树转有根树
用一个简单的 DFS 就可以实现分层。这里注意一定要加上
if (son != father)
这一判断条件,否则会无限递归
void dfs(int cur, int father) {
for (int i = 0; i < tree[cur].size(); i++) {
int son = tree[cur][i].v;
if (son != father) {
dfs(son, cur);
//
}
}
}
送一道例题: