Leetcode[递归] -- 第 N 个泰波那契数

0 题目描述

leetcode原题链接:第 N 个泰波那契数
在这里插入图片描述

1 原始递归

class Solution:
    def tribonacci(self, n: int) -> int:
        if n <= 1: return n
        if n == 2: return 1
        return self.tribonacci(n-1) + self.tribonacci(n-2) + self.tribonacci(n-3)

这种简单递归并不适用,因为这种递归方法的复杂度达到 3 N 3^N 3N

如何优化?

有两种思路。一种是空间优化,一种是性能优化。
1、空间优化
动态计算,计算 N N N个泰波那契数列需要 N N N 步操作。类似 tribonacci(k) = tribonacci(k - 1) + tribonacci(k - 2) + tribonacci(k - 3)。
在不允许占用大量空间的情况下,可以使用动态计算的方法,在内存中保留不超过 3 个泰波那契数即可。
2、性能优化
已知 n n n小于 38,可以先将泰波那契数列的前 38 项计算出来,保存在一个静态数组中。每次执行测试用例时,直接检索对应数字即可。

2 空间优化:动态计算

class Solution:
    def tribonacci(self, n: int) -> int:
        if n < 3:
            return 1 if n else 0

        x, y, z = 0, 1, 1
        for _ in range(n - 2):
            x, y, z = y, z, x + y + z
        return z

复杂度分析
时间复杂度: O ( N ) O(N) O(N)
空间复杂度: O ( 1 ) O(1) O(1),保存最后 3 个泰波那契数。

3 性能优化

1、预计算 38 个泰波那契数:
初始化一个数组用于保存泰波那契数,并初始化前 3 个泰波那契数字。i 从 3 循环到 38,每一步计算出一个新的泰波那契数。
2、从数组中检索所需的泰波那契数。

class Tri:
    def __init__(self):
        n = 38
        self.nums = nums = [0] * n
        nums[1] = nums[2] = 1
        for i in range(3, n):
            nums[i] = nums[i - 1] + nums[i - 2] + nums[i - 3]

class Solution:
    t = Tri()
    def tribonacci(self, n: int) -> int:
        return self.t.nums[n]

复杂度分析
时间复杂度: O ( 1 ) O(1) O(1),预计算 38 个泰波那契数字,并在数组中检索。
空间复杂度: O ( 1 ) O(1) O(1),存储 38 个泰波那契数字的数组。

参考资料

Leetcode – 斐波那契数 全面解析!
第 N 个泰波那契数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值