0 题目描述
leetcode原题链接:第 N 个泰波那契数
1 原始递归
class Solution:
def tribonacci(self, n: int) -> int:
if n <= 1: return n
if n == 2: return 1
return self.tribonacci(n-1) + self.tribonacci(n-2) + self.tribonacci(n-3)
这种简单递归并不适用,因为这种递归方法的复杂度达到 3 N 3^N 3N。
如何优化?
有两种思路。一种是空间优化,一种是性能优化。
1、空间优化
动态计算,计算 N N N个泰波那契数列需要 N N N 步操作。类似 tribonacci(k) = tribonacci(k - 1) + tribonacci(k - 2) + tribonacci(k - 3)。
在不允许占用大量空间的情况下,可以使用动态计算的方法,在内存中保留不超过 3 个泰波那契数即可。
2、性能优化
已知 n n n小于 38,可以先将泰波那契数列的前 38 项计算出来,保存在一个静态数组中。每次执行测试用例时,直接检索对应数字即可。
2 空间优化:动态计算
class Solution:
def tribonacci(self, n: int) -> int:
if n < 3:
return 1 if n else 0
x, y, z = 0, 1, 1
for _ in range(n - 2):
x, y, z = y, z, x + y + z
return z
复杂度分析
时间复杂度:
O
(
N
)
O(N)
O(N)。
空间复杂度:
O
(
1
)
O(1)
O(1),保存最后 3 个泰波那契数。
3 性能优化
1、预计算 38 个泰波那契数:
初始化一个数组用于保存泰波那契数,并初始化前 3 个泰波那契数字。i 从 3 循环到 38,每一步计算出一个新的泰波那契数。
2、从数组中检索所需的泰波那契数。
class Tri:
def __init__(self):
n = 38
self.nums = nums = [0] * n
nums[1] = nums[2] = 1
for i in range(3, n):
nums[i] = nums[i - 1] + nums[i - 2] + nums[i - 3]
class Solution:
t = Tri()
def tribonacci(self, n: int) -> int:
return self.t.nums[n]
复杂度分析
时间复杂度:
O
(
1
)
O(1)
O(1),预计算 38 个泰波那契数字,并在数组中检索。
空间复杂度:
O
(
1
)
O(1)
O(1),存储 38 个泰波那契数字的数组。