为什么说梯度方向是函数值上升(的速率)最快的方向

要说清楚这个问题,就要明白什么是函数值上升的速率,实际也就是方向导数。为弄清楚方向导数的含义,先来回顾 一元函数导数定义:

导数

f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=xx0limxx0f(x)f(x0)
这里 x x x可以大于 x 0 x_0 x0,也可以小于 x 0 x_0 x0。导数的含义就是因变量随着自变量的变化而变化的快慢,或者因变量相应于自变量的变化率。具体意义就是: 如果导数 f ′ ( x 0 ) > 0 f'(x_0)>0 f(x0)>0,说明,因变量随着自变量的增大 ( x > x 0 ) (x>x_0) (x>x0)而增大,或者因变量随着自变量的减小( x < x 0 x<x_0 x<x0)而减小。如果导数 f ′ ( x 0 ) > 0 f'(x_0)>0 f(x0)>0,说明,因变量随着自变量的增大 ( x > x 0 ) (x>x_0) (x>x0)而减小,或者因变量随着自变量的减小( x < x 0 x<x_0 x<x0)而增大。

方向导数

顾名思义,和方向有关的导数,实际含义是一个多元函数 f f f,在某一点某一方向的导数。
在多元函数中,要考察函数值的变化趋势,因为自变量是高维空间(维度大于1)。因此需要考察函数值在某一点的某一方向的变化快慢。因此也可以看出,方向导数是个标量。(因为函数值也随着向量长度的变化而变化,我们不考虑向量长度带来的变化,因此该方向约束为单位向量: P Q → = ( c o s α , c o s β ) \overrightarrow{PQ}=(cos\alpha,cos\beta) PQ =(cosα,cosβ)单位向量。)
多元函数 f f f,在某一点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)某一方向 P Q → \overrightarrow{PQ} PQ 的导数定义。Q:(x,y)
φ f φ P Q → ∣ ( x 0 , y 0 ) = lim ⁡ P Q → → ( 0 , 0 ) f ( x , y ) − f ( x 0 , y 0 ) ∣ P Q → ∣ \frac{\varphi f}{\varphi \overrightarrow{PQ}}|_{(x_0,y_0)} \\=\lim\limits_{\overrightarrow{PQ}\rightarrow(0,0)}\frac{f(x,y)-f(x_0,y_0)}{|\overrightarrow{PQ}|} φPQ φf(x0,y0)=PQ (0,0)limPQ f(x,y)f(x0,y0)
如何计算方向导数呢?借助泰勒展开式得。
= lim ⁡ P Q → → ( 0 , 0 ) f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) + o ( ( x − x 0 ) 2 + ( y − y 0 ) 2 ) ∣ P Q → ∣ = lim ⁡ P Q → → ( 0 , 0 ) f x ( x 0 , y 0 ) ( x − x 0 ) ∣ P Q → ∣ + f y ( x 0 , y 0 ) ( y − y 0 ) P Q → = lim ⁡ P Q → → ( 0 , 0 ) f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β =\lim\limits_{\overrightarrow{PQ}\rightarrow(0,0)}\frac{f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)+o(\sqrt{(x-x_0)^2+(y-y_0)^2})}{|\overrightarrow{PQ}|} \\=\lim\limits_{\overrightarrow{PQ}\rightarrow(0,0)}f_x(x_0,y_0)\frac{(x-x_0)}{|\overrightarrow{PQ}|}+f_y(x_0,y_0)\frac{(y-y_0)}{\overrightarrow{PQ}} \\=\lim\limits_{\overrightarrow{PQ}\rightarrow(0,0)}f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta =PQ (0,0)limPQ fx(x0,y0)(xx0)+fy(x0,y0)(yy0)+o((xx0)2+(yy0)2 )=PQ (0,0)limfx(x0,y0)PQ (xx0)+fy(x0,y0)PQ (yy0)=PQ (0,0)limfx(x0,y0)cosα+fy(x0,y0)cosβ
其中 α \alpha α P Q → \overrightarrow{PQ} PQ x x x轴正方向的夹角, β \beta β P Q → \overrightarrow{PQ} PQ y y y轴正方向的夹角。 0 ≤ α ≤ π , 0 ≤ β ≤ π 0\leq\alpha\leq\pi,0\leq\beta\leq\pi 0απ,0βπ。由方向角或者方向余弦概念可知 c o s α 2 + c o s β 2 = 1 cos\alpha^2+cos\beta^2=1 cosα2+cosβ2=1

梯度

定义grad f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0) ∇ f ( x 0 , y 0 ) = ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ) \nabla f(x_0,y_0)=(f_x(x_0,y_0),f_y(x_0,y_0)) f(x0,y0)=(fx(x0,y0),fy(x0,y0))为函数在点(x_0,y_0)处的梯度。
则上式可写为:
φ f φ P Q → ∣ ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) ⋅ P Q → = ∣ ∇ f ( x 0 , y 0 ) ∣ ∗ ∣ P Q → ∣ ∗ c o s θ = ∣ ∇ f ( x 0 , y 0 ) ∣ ∗ c o s θ \frac{\varphi f}{\varphi \overrightarrow{PQ}}|_{(x_0,y_0)}=\nabla f(x_0,y_0)\cdot\overrightarrow{PQ}=|\nabla f(x_0,y_0)|*|\overrightarrow{PQ}|*cos\theta=|\nabla f(x_0,y_0)|*cos\theta φPQ φf(x0,y0)=f(x0,y0)PQ =f(x0,y0)PQ cosθ=f(x0,y0)cosθ θ \theta θ为两向量夹角, θ ∈ [ 0 , π ] \theta\in[0,\pi] θ[0,π]
由此可以看出,函数 f f f在点 P P P的方向 P Q → \overrightarrow{PQ} PQ 的方向导数就是函数 f f f在点 P P P的梯度在 P Q → \overrightarrow{PQ} PQ 方向上的投影

在知道了方向导数求法后,我们希望知道某一点的方向导数的最大值,也就是变化最快的方向。
φ f φ P Q → ∣ ( x 0 , y 0 ) = ∣ ∇ f ( x 0 , y 0 ) ∣ ∗ c o s θ \frac{\varphi f}{\varphi \overrightarrow{PQ}}|_{(x_0,y_0)}=|\nabla f(x_0,y_0)|*cos\theta φPQ φf(x0,y0)=f(x0,y0)cosθ
(因为 P Q → = ( c o s α , c o s β ) \overrightarrow{PQ}=(cos\alpha,cos\beta) PQ =(cosα,cosβ)是单位向量。)
随着方向的变动, ∣ ∇ f ( x 0 , y 0 ) ∣ |\nabla f(x_0,y_0)| f(x0,y0)保持不变。
1)当 θ = 0 \theta=0 θ=0,即 P Q → \overrightarrow{PQ} PQ 为梯度方向时, φ f φ P Q → ∣ ( x 0 , y 0 ) \frac{\varphi f}{\varphi \overrightarrow{PQ}}|_{(x_0,y_0)} φPQ φf(x0,y0)最大,等于此点梯度的模。
所以我们说梯度方向是函数值上升(的速率)最快的方向。
2)同理, θ = π \theta=\pi θ=π,即 P Q → \overrightarrow{PQ} PQ 为负梯度方向时, φ f φ P Q → ∣ ( x 0 , y 0 ) \frac{\varphi f}{\varphi \overrightarrow{PQ}}|_{(x_0,y_0)} φPQ φf(x0,y0)最小,等于此点梯度的模的相反数。
也就是说,负梯度方向是函数值下降(的速率)最快的方向。

从另一角度来说

梯度由偏导数组成,偏导数和导数意义类似。
当偏导数 f x ( x 0 , y 0 ) > 0 f_x(x_0,y_0)>0 fx(x0,y0)>0,说明因变量随着自变量 x x x的增大而增大。要想因变量增大,自变量的位移 Δ x \Delta x Δx应该大于0。前进方向和偏导数指向方向一致, x = x + Δ x x = x+\Delta x x=x+Δx
当偏导数 f x ( x 0 , y 0 ) < 0 f_x(x_0,y_0)<0 fx(x0,y0)<0,说明因变量随着自变量 x x x的增大而减小。要想因变量增大,自变量的位移 Δ x \Delta x Δx应该小于0。前进方向和偏导数指向方向一致,依然只需 x = x + Δ x x = x+\Delta x x=x+Δx
因此梯度方向始终是函数值增大的方向。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值