为什么梯度是函数值上升最快的方向

导数

在说梯度之前,我们先得到先知道导数->偏导->方向导数,然后才能了解梯度和为什么梯度方向是函数值上升最快的方向
对于导数,我们要明确,导数除了代表函数在某点的切线的斜率外,还表示函数在该点的变化率

f ( x 0 ) ′ = l i m Δ x → 0 Δ y Δ x = l i m Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f(x_0)' = lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x} = lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)

即反应了函数值沿着x轴的方向变化率。

偏导数

拥有多个变量时的函数为多元函数,以二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)为例子

对于二元函数的偏导数:

f x ( x , y ) f_x(x,y) fx(x,y)指的是函数在y方向不变,函数值沿着x轴方向的变化率,即
f x ( x 0 , y 0 ) = l i m Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f_x(x_0,y_0)=lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} fx(x0,y0)=limΔx0Δxf(x0+Δx,y0)f(x0,y0)
f y ( x , y ) f_y(x,y) fy(x,y)指的是函数在x方向不变,函数值沿着y轴方向的变化率
f y ( x 0 , y 0 ) = l i m Δ x → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y f_y(x_0,y_0)=lim_{\Delta x\rightarrow 0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} fy(x0,y0)=limΔx0Δyf(x0,y0+Δy)f(x0,y0)
二元函数的图像是一个曲面,偏导数就是多元函数沿着某一个坐标轴的变化率,如果我们要考虑任意方向的变化率,是无法求解了,也无法了解整个函数的整体变化率,这就引出了方向导数

方向导数

方向导数就是沿着每个方向的函数值的变化率

以二元函数为例子:

单位向量的方向:

对于的坐标 ( x , y , z ) (x,y,z) (x,y,z),设该向量和 x , y , z x,y,z x,y,z轴正方向的夹角为 α , β , γ \alpha,\beta,\gamma α,β,γ,则由 x , y , z x,y,z xyz轴的单位向量,则
c o s α = ( x , y , z ) ⋅ ( 1 , 0 , 0 ) x 2 + y 2 + z 2 = x x 2 + y 2 + z 2 c o s β = ( x , y , z ) ⋅ ( 0 , 1 , 0 ) x 2 + y 2 + z 2 = y x 2 + y 2 + z 2 c o s γ = ( x , y , z ) ⋅ ( 0 , 0 , 1 ) x 2 + y 2 + z 2 = z x 2 + y 2 + z 2 ( c o s α , c o s β , c o s γ ) = 1 x 2 + y 2 + z 2 ( x , y , z ) cos\alpha = \frac{(x,y,z)·(1,0,0)}{\sqrt{x^2+y^2+z^2}} = \frac{x}{\sqrt{x^2+y^2+z^2}}\\ cos\beta = \frac{(x,y,z)·(0,1,0)}{\sqrt{x^2+y^2+z^2}} = \frac{y}{\sqrt{x^2+y^2+z^2}}\\ cos\gamma = \frac{(x,y,z)·(0,0,1)}{\sqrt{x^2+y^2+z^2}} = \frac{z}{\sqrt{x^2+y^2+z^2}}\\ (cos\alpha,cos\beta,cos\gamma)=\frac{1}{\sqrt{x^2+y^2+z^2}}(x,y,z) cosα=x2+y2+z2 (x,y,z)(1,0,0)=x2+y2+z2 xcosβ=x2+y2+z2 (x,y,z)(0,1,0)=x2+y2+z2 ycosγ=x2+y2+z2 (x,y,z)(0,0,1)=x2+y2+z2 z(cosα,cosβ,cosγ)=x2+y2+z2 1(x,y,z)
所以 ( c o s α , c o s β , c o s γ ) (cos\alpha,cos\beta, cos\gamma) (cosα,cosβ,cosγ)是OP的同向的单位向量

所以对二元函数,单位向量为 ( c o s α , c o s β ) (cos\alpha, cos\beta) (cosα,cosβ)

求参数方程

设两点 P ⃗ = ( x , y ) , P 0 ⃗ = ( x 0 , y 0 ) \vec{P}=(x,y), \vec{P_0}=(x_0,y_0) P =(x,y),P0 =(x0,y0)

直线 l = P 0 P ⃗ = ( x − x 0 , y − y 0 ) l=\vec{P_0P}=(x-x_0,y-y_0) l=P0P =(xx0,yy0)与向量 e l = ( c o s α , c o s β ) e_l=(cos\alpha,cos\beta) el=(cosα,cosβ)平行,且方向相同

所以
P 0 P ⃗ ∣ ∣ e l → P 0 P ⃗ = t ⋅ e l ∴ ( x − x 0 , y − y 0 ) = t ⋅ ( c o s α , c o s β ) ∴ x = x 0 + t c o s α , y = y 0 + t c o s β ∴ = P = ( x , y ) = ( x 0 + t c o s α , y 0 + t c o s β ) \vec{P_0P} || e_l \rightarrow \vec{P_0P}=t\cdot e_l \\ \therefore (x-x_0, y-y_0)=t\cdot (cos\alpha, cos\beta)\\ \therefore x = x_0 + tcos\alpha, y = y_0 + tcos\beta \\ \therefore =P = (x,y) = (x_0 + tcos\alpha, y_0 + tcos\beta) P0P elP0P =tel(xx0,yy0)=t(cosα,cosβ)x=x0+tcosα,y=y0+tcosβ=P=(x,y)=(x0+tcosα,y0+tcosβ)
所以沿着指向l的方向导数为 ∂ f ∂ l ∣ ( x 0 , y 0 ) = l i m t → 0 = f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \large\frac{\partial f}{\partial l}|_{(x_0,y_0)} = lim_{t\rightarrow 0}=\frac{f(x_0+tcos\alpha, y_0+tcos\beta)-f(x_0,y_0)}{t} lf(x0,y0)=limt0=tf(x0+tcosα,y0+tcosβ)f(x0,y0)

即是函数在指向l的方向上的方向导数 ∂ f ∂ l ∣ ( x 0 , y 0 ) \frac{\partial f}{\partial l}|_{(x_0,y_0)} lf(x0,y0)

梯度

如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y)可微分,那么函数沿着该点任意方向的方向导数必然存在

因为可微分,所以
f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) + f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) 根 据 方 向 导 数 的 定 义 , 令 Δ x = t c o s α , Δ y = t c o s β   有 f x ( x 0 , y 0 ) t c o s α + f y ( x 0 , y 0 ) t c o s β + o ( ( t c o s α ) 2 + ( t c o s β ) 2 ) = f x ( x 0 , y 0 ) t c o s α + f y ( x 0 , y 0 ) t c o s β ∴ ∂ f ∂ l ∣ ( x 0 , y 0 ) = l i m t → 0 f x ( x 0 , y 0 ) t c o s α + f y ( x 0 , y 0 ) t c o s β t = f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β = ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ) ⋅ ( c o s α , c o s β ) f(x_0+\Delta x, y_0+\Delta y)-f(x_0,y_0) \\ =f(x_0+\Delta x, y_0+\Delta y)-f(x_0+\Delta x, y_0) + f(x_0+\Delta x, y_0)-f(x_0,y_0)\\ =f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}) \\ 根据方向导数的定义,令\Delta x = tcos\alpha,\Delta y = tcos\beta\ 有\\ f_x(x_0,y_0)tcos\alpha + f_y(x_0,y_0)tcos\beta + o(\sqrt{(tcos\alpha)^2 + (tcos\beta)^2}) \\ = f_x(x_0,y_0)tcos\alpha + f_y(x_0,y_0)tcos\beta \\ \therefore \frac{\partial f}{\partial l}|_{(x_0,y_0)}=lim_{t\rightarrow 0}\frac{f_x(x_0,y_0)tcos\alpha + f_y(x_0,y_0)tcos\beta}{t} \\ = f_x(x_0,y_0)cos\alpha + f_y(x_0,y_0)cos\beta \\ = (f_x(x_0,y_0),f_y(x_0,y_0))\cdot (cos\alpha,cos\beta) f(x0+Δx,y0+Δy)f(x0,y0)=f(x0+Δx,y0+Δy)f(x0+Δx,y0)+f(x0+Δx,y0)f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2 )Δx=tcosα,Δy=tcosβ fx(x0,y0)tcosα+fy(x0,y0)tcosβ+o((tcosα)2+(tcosβ)2 )=fx(x0,y0)tcosα+fy(x0,y0)tcosβlf(x0,y0)=limt0tfx(x0,y0)tcosα+fy(x0,y0)tcosβ=fx(x0,y0)cosα+fy(x0,y0)cosβ=(fx(x0,y0),fy(x0,y0))(cosα,cosβ)
令梯度为 g r a d f = ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ) grad f = (f_x(x_0,y_0),f_y(x_0,y_0)) gradf=(fx(x0,y0),fy(x0,y0))
其中 ( cos ⁡ α , cos ⁡ β ) (\cos \alpha,\cos \beta) (cosα,cosβ)是方向
所以方向导数= ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ) ⋅ ( c o s α , c o s β ) = ∣ f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) ∣ ⋅ ∣ c o s α , c o s β ∣ c o s α (f_x(x_0,y_0),f_y(x_0,y_0))\cdot (cos\alpha,cos\beta)=|f_x(x_0,y_0),f_y(x_0,y_0)|\cdot |cos\alpha,cos\beta|cos\alpha (fx(x0,y0),fy(x0,y0))(cosα,cosβ)=fx(x0,y0),fy(x0,y0)cosα,cosβcosα,其中α是方向和梯度的夹角,所以当 c o s α = 1 即 α = 0 cos\alpha = 1即\alpha = 0 cosα=1α=0时取得最大,即方向和梯度同意方向时取得。

所以当方向为梯度的方向时,导数最大,则函数值上升最快。故反方向是下降最快

本文章写之前参考了很多文章,如果有些地方雷同,算我抄袭 ,其实当初只是为了搞清为什么梯度的反方向是函数值下降最快的方向,然后查了一堆资料,上面是我自己整理后,理清的结果罢了,如果觉得我的文章对你有帮助,那么请不要吝啬你的收藏和点赞(

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值