【题目】HDU P6595(C849E)Everything Is Generated In Equal Probability

题目大意

给出一个整数 N N N和一段程序(包括三个函数):

  • SUBSEQUENCE( A r r a y ) \text{SUBSEQUENCE(}Array\text) SUBSEQUENCE(Array):随机返回 A r r a y Array Array的一个子序列(可为空)。
  • CNT-INVERSION-PAIRS( A r r a y ) \text{CNT-INVERSION-PAIRS(}Array\text) CNT-INVERSION-PAIRS(Array):返回 A r r a y Array Array的逆序对数。
  • CALCULATE( A r r a y ) \text{CALCULATE(}Array\text) CALCULATE(Array):若 A r r a y Array Array为空,返回 0 0 0;否则返回 CNT-INVERSION-PAIRS( A r r a y ) + CALCULATE(SUBSEQUENCE( A r r a y )) \text{CNT-INVERSION-PAIRS(}Array\text)+\text{CALCULATE(SUBSEQUENCE(}Array\text{))} CNT-INVERSION-PAIRS(Array)+CALCULATE(SUBSEQUENCE(Array))

先随机生成一个整数 n ∈ [ 1 , N ] n\in[1,N] n[1,N],再随机生成一个长度为 n n n的排列,求这个排列的 CALCULATE() \text{CALCULATE()} CALCULATE()函数的期望值。
有多组测试数据,每组数据 N ⩽ 3000 N\leqslant 3000 N3000


思路

先求出长度为 n n n的排列的 CNT-INVERSION-PAIRS() \text{CNT-INVERSION-PAIRS()} CNT-INVERSION-PAIRS()函数的期望值,有两种思路:

思路1: 长度为 n n n的排列中一共有 C n 2 C_n^2 Cn2对数对,每一对逆序的概率为 1 2 \frac 12 21,累加起来就是
C n 2 2 = n ! 2 ( 2 ! ) ( n − 2 ) ! = n ( n − 1 ) 4 \frac{C_n^2}2=\frac{n!}{2(2!)(n-2)!}=\frac{n(n-1)}4 2Cn2=2(2!)(n2)!n!=4n(n1)

思路2: 设该期望值对应的状态为 d p 1 [ n ] dp_1[n] dp1[n],显然 d p 1 [ 1 ] = 0 dp_1[1]=0 dp1[1]=0 d p 1 [ 2 ] = 1 2 dp_1[2]=\frac 12 dp1[2]=21。考虑将数字 n n n插入 1 1 1 n − 1 n-1 n1的排列中,一共有 n n n个位置可插入,增加的逆序对数分别为 0 , 1 , 2 , … , n − 1 0,1,2,\dots,n-1 0,1,2,,n1,于是得到
d p 1 [ n ] = d p 1 [ n − 1 ] + 0 + 1 + 2 + ⋯ + ( n − 1 ) n = d p 1 [ n − 1 ] + n − 1 2 d p 1 [ n ] = n ( n − 1 ) 4 \begin{aligned} dp_1[n]&=dp_1[n-1]+\frac{0+1+2+\cdots+(n-1)}n\\ &=dp_1[n-1]+\frac{n-1}2\\ dp_1[n]&=\frac{n(n-1)}4 \end{aligned} dp1[n]dp1[n]=dp1[n1]+n0+1+2++(n1)=dp1[n1]+2n1=4n(n1)

再求长度为 n n n的排列的 CALCULATE() \text{CALCULATE()} CALCULATE()函数的期望值。设该期望值对应的状态为 d p 2 [ n ] dp_2[n] dp2[n],其中 d p 2 [ 1 ] = 0 dp_2[1]=0 dp2[1]=0。由题意不难得到
d p 2 [ n ] = d p 1 [ n ] + ∑ i = 0 n C n i ⋅ d p 2 [ i ] ∑ i = 0 n C n i = n ( n − 1 ) 4 + ∑ i = 0 n − 1 C n i ⋅ d p 2 [ i ] 2 n + d p 2 [ n ] 2 n d p 2 [ n ] = 2 n − 2 n ( n − 1 ) + ∑ i = 0 n − 1 C n i ⋅ d p 2 [ i ] 2 n − 1 \begin{aligned} dp_2[n]&=dp_1[n]+\frac{\sum_{i=0}^nC_n^i\cdot dp_2[i]}{\sum_{i=0}^nC_n^i}\\ &=\frac{n(n-1)}4+\frac{\sum_{i=0}^{n-1}C_n^i\cdot dp_2[i]}{2^n}+\frac{dp_2[n]}{2^n}\\ dp_2[n]&=\frac{2^{n-2}n(n-1)+\sum_{i=0}^{n-1}C_n^i\cdot dp_2[i]}{2^n-1} \end{aligned} dp2[n]dp2[n]=dp1[n]+i=0nCnii=0nCnidp2[i]=4n(n1)+2ni=0n1Cnidp2[i]+2ndp2[n]=2n12n2n(n1)+i=0n1Cnidp2[i]

于是可以递推求出 d p 2 [ n ] dp_2[n] dp2[n],时间复杂度 O ( n 2 ) O(n^2) O(n2)
计算出 d p 2 [ n ] dp_2[n] dp2[n]后,由于 n ∈ [ 1 , N ] n\in[1,N] n[1,N],显然
a n s = ∑ n = 1 N d p 2 [ n ] N ans=\frac{\sum_{n=1}^Ndp_2[n]}N ans=Nn=1Ndp2[n]

预处理 d p 2 [ n ] dp_2[n] dp2[n]的前缀和后就可以 O ( log ⁡ 2 n ) O(\log_2n) O(log2n)求解。如果预处理了 N N N的逆元,求解可以达到 O ( 1 ) O(1) O(1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值