调和函数.

Δ u = 0 \Delta u=0 Δu=0,证明 u ( x ) = ∫ ∂ B r − u ( y ) d S \displaystyle u(\boldsymbol x)=\int\limits_{\partial B_r}\hspace{-1.05em}-u(\boldsymbol y)\text dS u(x)=Bru(y)dS

Δ \Delta Δ为拉普拉斯算子, ∫ ∂ B r − \displaystyle\int\limits_{\partial B_r}\hspace{-1.05em}- Br为以 x \boldsymbol x x为球心、 r r r为半径的球面上的平均积分。


由于 Δ u = div ( ∇ u ) \Delta u=\text{div}(\nabla u) Δu=div(u),由高斯公式得

∫ B r Δ u ( y ) d V = ∫ B r div ( ∇ u ( y ) ) d V = ∫ ∂ B r ∇ u ( y ) ⋅ e n d S \int\limits_{B_r}\Delta u(\boldsymbol y)\text dV=\int\limits_{B_r}\text{div}(\nabla u(\boldsymbol y))\text dV=\int\limits_{\partial B_r}\nabla u(\boldsymbol y)\cdot\boldsymbol e_n\text dS BrΔu(y)dV=Brdiv(u(y))dV=Bru(y)endS

Δ u = 0 \Delta u=0 Δu=0,可得上式左端

∫ B r Δ u ( y ) d V = 0 \int\limits_{B_r}\Delta u(\boldsymbol y)\text dV=0 BrΔu(y)dV=0

对于上式右端,由于 y \boldsymbol y y位于以 x \boldsymbol x x为球心、 r r r为半径的球面上,可设 ω = y − x \boldsymbol\omega=\boldsymbol y-\boldsymbol x ω=yx,则 ∣ ω ∣ = r |\boldsymbol\omega|=r ω=r,且 ω \boldsymbol\omega ω沿径向方向。因此

∫ ∂ B r ∇ u ( y ) ⋅ e n d S = ∫ ∣ ω ∣ = r ∇ u ( x + ω ) ⋅ e n d S ′ = ∫ ∣ ω ∣ = r ∇ u ( x + ω ) ⋅ ω ∣ ω ∣ d S ′ = r 2 ∫ ∣ ω ∣ = 1 ∇ u ( x + r ω ) ⋅ ω d S ′ = r 2 ∫ ∣ ω ∣ = 1 ∇ u ( x + r ω ) ⋅ ω d S ′ \begin{aligned} \int\limits_{\partial B_r}\nabla u(\boldsymbol y)\cdot\boldsymbol e_n\text dS&=\int\limits_{|\boldsymbol\omega|=r}\nabla u(\boldsymbol x+\boldsymbol\omega)\cdot\boldsymbol e_n\text dS' =\int\limits_{|\boldsymbol\omega|=r}\nabla u(\boldsymbol x+\boldsymbol\omega)\cdot\dfrac{\boldsymbol\omega}{|\boldsymbol\omega|}\text dS'\\ &=r^2\int\limits_{|\boldsymbol\omega|=1}\nabla u(\boldsymbol x+r\boldsymbol\omega)\cdot\boldsymbol\omega\text dS' =r^2\int\limits_{|\boldsymbol\omega|=1}\nabla u(\boldsymbol x+r\boldsymbol\omega)\cdot\boldsymbol\omega\text dS'\\ \end{aligned} Bru(y)endS=ω=ru(x+ω)endS=ω=ru(x+ω)ωωdS=r2ω=1u(x+rω)ωdS=r2ω=1u(x+rω)ωdS

u u u对第 i i i维变量的偏导数为 u i u_i ui ω = [ ω 1 , ω 2 , ⋯   , ω n ] T \boldsymbol\omega=[\omega_1,\omega_2,\cdots,\omega_n]^{\text T} ω=[ω1,ω2,,ωn]T,则上式中

∇ u ( x + r ω ) ⋅ ω = ∑ i = 1 n u i ( x + r ω ) ⋅ ω i = ∂ ∂ r u ( x + r ω ) \nabla u(\boldsymbol x+r\boldsymbol\omega)\cdot\boldsymbol\omega=\sum_{i=1}^nu_i(\boldsymbol x+r\boldsymbol\omega)\cdot\omega_i=\dfrac{\partial}{\partial r}u(\boldsymbol x+r\boldsymbol\omega) u(x+rω)ω=i=1nui(x+rω)ωi=ru(x+rω)

因此之前的式子右端进一步化为

∫ ∂ B r ∇ u ( y ) ⋅ e n d S = r 2 ∫ ∣ ω ∣ = 1 ∂ ∂ r u ( x + r ω ) d S ′ = r 2 ∂ ∂ r ∫ ∣ ω ∣ = 1 u ( x + r ω ) d S ′ \int\limits_{\partial B_r}\nabla u(\boldsymbol y)\cdot\boldsymbol e_n\text dS=r^2\int\limits_{|\boldsymbol\omega|=1}\dfrac{\partial}{\partial r}u(\boldsymbol x+r\boldsymbol\omega)\text dS'=r^2\dfrac{\partial}{\partial r}\int\limits_{|\boldsymbol\omega|=1}u(\boldsymbol x+r\boldsymbol\omega)\text dS' Bru(y)endS=r2ω=1ru(x+rω)dS=r2rω=1u(x+rω)dS

由于左端等于 0 0 0,所以 ∂ ∂ r ∫ ∣ ω ∣ = 1 u ( x + r ω ) d S ′ = 0 \displaystyle\dfrac{\partial}{\partial r}\int\limits_{|\boldsymbol\omega|=1}u(\boldsymbol x+r\boldsymbol\omega)\text dS'=0 rω=1u(x+rω)dS=0,即 ∫ ∣ ω ∣ = 1 u ( x + r ω ) d S ′ \displaystyle\int\limits_{|\boldsymbol\omega|=1}u(\boldsymbol x+r\boldsymbol\omega)\text dS' ω=1u(x+rω)dS关于 r r r是常值函数。令 r → 0 r\to0 r0,得

∫ ∣ ω ∣ = 1 u ( x + r ω ) d S ′ = ∫ ∣ ω ∣ = 1 u ( x ) d S ′ = u ( x ) ∫ ∣ ω ∣ = 1 d S ′ = u ( x ) ⋅ α \int\limits_{|\boldsymbol\omega|=1}u(\boldsymbol x+r\boldsymbol\omega)\text dS'=\int\limits_{|\boldsymbol\omega|=1}u(\boldsymbol x)\text dS'=u(\boldsymbol x)\int\limits_{|\boldsymbol\omega|=1}\text dS'=u(\boldsymbol x)\cdot \alpha ω=1u(x+rω)dS=ω=1u(x)dS=u(x)ω=1dS=u(x)α

其中 α \alpha α为半径为 1 1 1的球面面积。因此

u ( x ) = 1 α ∫ ∣ ω ∣ = 1 u ( x + r ω ) d S ′ = 1 r 2 α ∫ ∣ ω ∣ = r u ( x + ω ) d S ′ = 1 r 2 α ∫ ∂ B r u ( y ) d S = 1 ∣ ∂ B r ∣ ∫ ∂ B r u ( y ) d S = ∫ ∂ B r − u ( y ) d S \begin{aligned} u(\boldsymbol x)&=\dfrac 1{\alpha}\int\limits_{|\boldsymbol\omega|=1}u(\boldsymbol x+r\boldsymbol\omega)\text dS' =\dfrac 1{r^2\alpha}\int\limits_{|\boldsymbol\omega|=r}u(\boldsymbol x+\boldsymbol\omega)\text dS'\\ &=\dfrac 1{r^2\alpha}\int\limits_{\partial B_r}u(\boldsymbol y)\text dS =\dfrac 1{|\partial B_r|}\int\limits_{\partial B_r}u(\boldsymbol y)\text dS =\int\limits_{\partial B_r}\hspace{-1.05em}-u(\boldsymbol y)\text dS \end{aligned} u(x)=α1ω=1u(x+rω)dS=r2α1ω=ru(x+ω)dS=r2α1Bru(y)dS=Br1Bru(y)dS=Bru(y)dS

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值