映射与集合的可列性

映射

基本概念

给定两个集合 X , Y X,Y X,Y,若对于任意的元素 x ∈ X x\in X xX,都存在唯一的 y ∈ Y y\in Y yY与之对应,就称定义了一个从 X X X Y Y Y映射,记作

f : X → Y f:X\to Y f:XY

其中 y y y称为 x x x在映射 f f f下的,记作 f ( x ) f(x) f(x) X X X称为映射 f f f定义域

A ⊂ X , B ⊂ Y A\subset X,B\subset Y AX,BY,定义象集 f ( A ) f(A) f(A)原象集 f − 1 ( B ) f^{-1}(B) f1(B)

f ( A ) = { f ( x ) ∈ Y ∣ x ∈ A } f − 1 ( B ) = { x ∈ X ∣ f ( x ) ∈ B } \begin{aligned} f(A)&=\{f(x)\in Y|x\in A\}\\ f^{-1}(B)&=\{x\in X|f(x)\in B\} \end{aligned} f(A)f1(B)={f(x)YxA}={xXf(x)B}

根据定义,显然有 f ( A ) ⊂ Y , f − 1 ( B ) ⊂ X f(A)\subset Y,f^{-1}(B)\subset X f(A)Y,f1(B)X

要注意的是 f − 1 f^{-1} f1并不是一个映射。原因是对于 y ∈ Y y\in Y yY,可能有多个 x ∈ X x\in X xX使得 f ( x ) = y f(x)=y f(x)=y,此时有 A ⊂ f − 1 ( f ( A ) ) A\subset f^{-1}(f(A)) Af1(f(A));也有可能不存在 x ∈ X x\in X xX使得 f ( x ) = y f(x)=y f(x)=y,此时有 f ( f − 1 ( B ) ) ⊂ B f(f^{-1}(B))\subset B f(f1(B))B

映射由定义域 X X X和对应法则 f f f确定。若映射 f , g f,g f,g的定义域相同(记为 A A A),且对于任意的 x ∈ A x\in A xA,都有 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),则称映射 f , g f,g f,g相等,记作 f = g f=g f=g

映射的分类

对于映射 f : X → Y f:X\to Y f:XY

  • f ( X ) ⊂ Y f(X)\subset Y f(X)Y,则称 f f f内射

  • f ( X ) = Y f(X)=Y f(X)=Y,则称 f f f满射全射

  • 若对于任意的 y ∈ f ( X ) y\in f(X) yf(X) f − 1 ( y ) f^{-1}(y) f1(y)是单点集,则称 f f f单射

    f f f是单射”有两个等价描述,常用来证明一个映射是单射:

    • 若对任意的 x 1 , x 2 ∈ X x_1,x_2\in X x1,x2X x 1 ≠ x 2 x_1\neq x_2 x1=x2,则 f ( x 1 ) ≠ f ( x 2 ) f(x_1)\neq f(x_2) f(x1)=f(x2)
    • 若对任意的 x 1 , x 2 ∈ X x_1,x_2\in X x1,x2X f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2),则 x 1 = x 2 x_1=x_2 x1=x2
  • f f f既是单射又是满射,则称 f f f一一映射双射

f : X → Y f:X\to Y f:XY是一个一一映射,则可以通过“若 x ↦ y x\mapsto y xy,则 y ↦ x y\mapsto x yx”的方法作出其逆映射

f − 1 : Y → X f^{-1}:Y\to X f1:YX

映射 f − 1 f^{-1} f1也是一一映射,且其逆映射 ( f − 1 ) − 1 : X → Y (f^{-1})^{-1}:X\to Y (f1)1:XY f : X → Y f:X\to Y f:XY一致。

映射的复合

设映射 f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:XY,g:YZ,且 g g g定义在 f f f的值域上,则可用

( g ∘ f ) ( x ) : = g ( f ( x ) ) (g\circ f)(x):=g(f(x)) (gf)(x):=g(f(x))

确定 X X X上的一个新映射 g ∘ f : X → Z g\circ f:X\to Z gf:XZ,该映射称为映射 f f f与映射 g g g复合

复合映射一般不满足交换律,因为交换后定义域可能不同。

复合映射满足结合律,即设 f : X → Y , g : Y → Z , h : Z → W f:X\to Y,g:Y\to Z,h:Z\to W f:XY,g:YZ,h:ZW,则

h ∘ ( g ∘ f ) = ( h ∘ g ) ∘ f h\circ(g\circ f)=(h\circ g)\circ f h(gf)=(hg)f

事实上,对任意的 x ∈ X x\in X xX,有

( h ∘ ( g ∘ f ) ) ( x ) = h ( ( g ∘ f ) ( x ) ) = h ( g ( f ( x ) ) ) = ( h ∘ g ) ( f ( x ) ) = ( ( h ∘ g ) ∘ f ) ( x ) \begin{aligned} (h\circ(g\circ f))(x)&=h((g\circ f)(x))=h(g(f(x)))\\ &=(h\circ g)(f(x))=((h\circ g)\circ f)(x) \end{aligned} (h(gf))(x)=h((gf)(x))=h(g(f(x)))=(hg)(f(x))=((hg)f)(x)

例1: 设映射 f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:XY,g:YZ,求证:

(1)若 g ∘ f g\circ f gf是单射,则 f f f是单射;
(2)若 g ∘ f g\circ f gf是满射,则 g g g是满射。

证明:

若对任意的 x 1 , x 2 ∈ X x_1,x_2\in X x1,x2X f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2),则 g ( f ( x 1 ) ) = g ( f ( x 2 ) ) g(f(x_1))=g(f(x_2)) g(f(x1))=g(f(x2))。由于 g ∘ f g\circ f gf是单射,所以 x 1 = x 2 x_1=x_2 x1=x2,即 f f f是单射。

由于 g ∘ f g\circ f gf是满射,所以对任意的 z ∈ Z z\in Z zZ,存在 x ∈ X , g ( f ( x ) ) = z x\in X,g(f(x))=z xX,g(f(x))=z,也即有 y = f ( x ) y=f(x) y=f(x),使得 g ( y ) = z g(y)=z g(y)=z,所以 g g g是满射。

例2: 设映射 f : X → Y , g : Y → X f:X\to Y,g:Y\to X f:XY,g:YX id X \text{id}_X idX表示恒等映射1,求证:

(1)若 g ∘ f = id X g\circ f=\text{id}_X gf=idX,则 f f f是单射, g g g是满射;
(2)若 g ∘ f = id X , f ∘ g = id Y g\circ f=\text{id}_X,f\circ g=\text{id}_Y gf=idX,fg=idY,则 f , g f,g f,g是一一映射,且 f − 1 = g , g − 1 = f f^{-1}=g,g^{-1}=f f1=g,g1=f

证明:

因为 g ∘ f g\circ f gf是单射,所以 f f f是单射;因为 g ∘ f g\circ f gf是满射,所以 g g g是满射。

g ∘ f = id X g\circ f=\text{id}_X gf=idX可知 f f f是单射, g g g是满射;由 f ∘ g = id Y f\circ g=\text{id}_Y fg=idY可知 g g g是单射, f f f是满射。所以 f , g f,g f,g是一一映射。

对任意的 x ∈ X x\in X xX,有

g ( f ( x ) ) = id X ( x ) = x = g ( g − 1 ( x ) ) g(f(x))=\text{id}_X(x)=x=g(g^{-1}(x)) g(f(x))=idX(x)=x=g(g1(x))

由于 g g g是单射,所以 f ( x ) = g − 1 ( x ) f(x)=g^{-1}(x) f(x)=g1(x),即 f = g − 1 f=g^{-1} f=g1

同理,对任意的 y ∈ Y y\in Y yY,有

f ( g ( y ) ) = id Y ( y ) = y = f ( f − 1 ( y ) ) f(g(y))=\text{id}_Y(y)=y=f(f^{-1}(y)) f(g(y))=idY(y)=y=f(f1(y))

由于 f f f是单射,所以 g ( y ) = f − 1 ( y ) g(y)=f^{-1}(y) g(y)=f1(y),即 g = f − 1 g=f^{-1} g=f1

等势集

定义

给定集合 A , B A,B A,B,如果存在从 A A A B B B的一一映射,则称集合 A , B A,B A,B等势,也称 A , B A,B A,B等势集,记作 A ∼ B A\sim B AB

两个有限集合等势,当且仅当两个集合元素个数相等。

空集只与空集本身等势。

性质

  • 等势具有自反性,即 A ∼ A A\sim A AA
  • 等势具有对称性,即若 A ∼ B A\sim B AB,则 B ∼ A B\sim A BA
  • 等势具有传递性,即若 A ∼ B , B ∼ C A\sim B,B\sim C AB,BC,则 A ∼ C A\sim C AC

例1: 自然数集与整数集等势。

证明: 可以用自然数集中的奇数对应整数集中的负数,用自然数集中的偶数对应整数集中的非负数。

0 1 2 3 4 5 … 0 − 1 1 − 2 2 − 3 … \begin{array}{rrrrrrr} 0&1&2&3&4&5&\dots\\ 0&-1&1&-2&2&-3&\dots \end{array} 001121324253

据此构造一一映射 f : N → Z f:\mathbb N\to\mathbb Z f:NZ,其中

f ( n ) = { k n = 2 k − ( k + 1 ) n = 2 k + 1 , k ∈ N f(n)=\begin{cases} k&n=2k\\ -(k+1)&n=2k+1 \end{cases},k\in\mathbb N f(n)={k(k+1)n=2kn=2k+1,kN

例2: 任意两个实闭区间 [ a , b ] [a,b] [a,b] [ c , d ] [c,d] [c,d]等势。

证明: 如图,对于 x ∈ [ a , b ] x\in[a,b] x[a,b],存在 y ∈ [ c , d ] y\in[c,d] y[c,d]与之一一对应。其中 x − a y − c = a − b c − d \dfrac{x-a}{y-c}=\dfrac{a-b}{c-d} ycxa=cdab,解得 y = c − d a − b ( x − a ) + c y=\dfrac{c-d}{a-b}(x-a)+c y=abcd(xa)+c

据此构造一一映射 f : [ a , b ] → [ c , d ] f:[a,b]\to[c,d] f:[a,b][c,d],其中

f ( x ) = c − d a − b ( x − a ) + c , x ∈ [ a , b ] f(x)=\dfrac{c-d}{a-b}(x-a)+c,x\in[a,b] f(x)=abcd(xa)+c,x[a,b]

例3: 区间 ( 0 , 1 ) (0,1) (0,1)与实数集 R \mathbb R R等势。

证明: 如图,对于 x ∈ ( 0 , 1 ) x\in(0,1) x(0,1),存在 y ∈ R y\in\mathbb R yR与之一一对应。不难得到 θ = π x \theta=\pi x θ=πx,则 − y = cot ⁡ θ = cot ⁡ π x -y=\cot\theta=\cot\pi x y=cotθ=cotπx,即 y = − cot ⁡ π x y=-\cot\pi x y=cotπx

据此构造一一映射 f : ( 0 , 1 ) → R f:(0,1)\to\mathbb R f:(0,1)R,其中

f ( x ) = − cot ⁡ π x , x ∈ ( 0 , 1 ) f(x)=-\cot\pi x,x\in(0,1) f(x)=cotπx,x(0,1)

可列集

定义

与自然数集等势的集合称为可列集可数集

换言之,如果无限集合 A A A中的元素可以按照一定次序排成一列并标上序号,

a 1 , a 2 , a 3 , … , a n , … a_1,a_2,a_3,\dots,a_n,\dots a1,a2,a3,,an,

那么集合 A A A就为可列集。

由于整数集与自然数集等势(见前文),所以整数集是可列集。

性质

根据可列集的定义,不难发现如下性质:

  • 有限个可列集的并集是可列集。

    既然每个可列集中的元素可以排成一个序列,那么并集中的元素就是这有限个序列组成的一个新的序列,所以并集可列。

  • 可列个可列集的并集是可列集。

    既然每个可列集中的元素可以排成一个序列,可列个可列集也可以排成一个序列,并集中的元素自然能够排成一个序列,所以并集可列。

  • 可列集的无限子集是可列集。

    一个无限的序列中任意抽出无限个元素,也一定能排成一个序列。

例1: 有理数集是可列集。

证明: 有理数可以写成分数的形式。对于分数 a b \dfrac ab ba,若满足 a + b = n a+b=n a+b=n,则所有这样的分数可以排成一列:

1 n − 1 , 2 n − 2 , 3 n − 3 , … , n − 2 2 , n − 1 1 \dfrac 1{n-1},\dfrac 2{n-2},\dfrac 3{n-3},\dots,\dfrac{n-2}2,\dfrac{n-1}1 n11,n22,n33,,2n2,1n1

对于 n ⩾ 2 n\geqslant 2 n2,这些分数可以全部排列成

1 1 , 1 2 , 2 1 , 1 3 , 2 2 , 3 1 , 1 4 , 2 3 , 3 2 , 4 1 , 1 5 , 2 4 , 3 3 , 4 2 , 5 1 , … \dfrac 11,\dfrac 12,\dfrac 21,\dfrac 13,\dfrac 22,\dfrac 31,\dfrac 14,\dfrac 23,\dfrac 32,\dfrac 41,\dfrac 15,\dfrac 24,\dfrac 33,\dfrac 42,\dfrac 51,\dots 11,21,12,31,22,13,41,32,23,14,51,42,33,24,15,

其中会有重复的元素(例如 1 1 \dfrac 11 11 2 2 \dfrac 22 22),除去其中重复的元素,得到的仍然是一个无限序列:

1 1 , 1 2 , 2 1 , 1 3 , 3 1 , 1 4 , 2 3 , 3 2 , 4 1 , 1 5 , 5 1 , … \dfrac 11,\dfrac 12,\dfrac 21,\dfrac 13,\dfrac 31,\dfrac 14,\dfrac 23,\dfrac 32,\dfrac 41,\dfrac 15,\dfrac 51,\dots 11,21,12,31,13,41,32,23,14,51,15,

所以有理数可以全部排成一列,即有理数集可列。

例2: 区间 ( 0 , 1 ) (0,1) (0,1)上的实数不可列。

证明: 假设 ( 0 , 1 ) (0,1) (0,1)上的实数可列,则可以排列成

0. a 11 a 12 a 13 a 14 a 15 … 0. a 21 a 22 a 23 a 24 a 25 … 0. a 31 a 32 a 33 a 34 a 35 … 0. a 41 a 42 a 43 a 44 a 45 … ⋮ \begin{array}{l} 0.a_{11}a_{12}a_{13}a_{14}a_{15}\dots\\ 0.a_{21}a_{22}a_{23}a_{24}a_{25}\dots\\ 0.a_{31}a_{32}a_{33}a_{34}a_{35}\dots\\ 0.a_{41}a_{42}a_{43}a_{44}a_{45}\dots\\ \vdots \end{array} 0.a11a12a13a14a150.a21a22a23a24a250.a31a32a33a34a350.a41a42a43a44a45

( 0 , 1 ) (0,1) (0,1)内的一个实数 b = 0. b 1 b 2 b 3 b 4 b 5 … b=0.b_1b_2b_3b_4b_5\dots b=0.b1b2b3b4b5,使得 b 1 ≠ a 11 , b 2 ≠ a 22 , … , b n ≠ a n n , … b_1\neq a_{11},b_2\neq a_{22},\dots,b_n\neq a_{nn},\dots b1=a11,b2=a22,,bn=ann,。这样,数 b b b与序列中的每一个数都至少有一位不同,即数 b b b不在序列中,矛盾。所以 ( 0 , 1 ) (0,1) (0,1)上的实数不可列。

例3: 实数集不可列。

证明: 假设实数集可列,由于 ( 0 , 1 ) (0,1) (0,1)与实数集等势(见前文),则 ( 0 , 1 ) (0,1) (0,1)可列,矛盾,所以实数集不可列。

例4: 无理数集不可列。

证明: 假设无理数集可列,由于有理数集可列,则有理数集与无理数集的并集可列,即实数集可列,矛盾。所以无理数集不可列。

另外,代数数集可列,超越数集不可列。


  1. 恒等映射 id X : X → X \text{id}_X:X\to X idX:XX满足对任意的 x ∈ X x\in X xX id X ( x ) = x \text{id}_X(x)=x idX(x)=x。恒等映射是一一映射。 ↩︎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值