卷积神经网络

全连接的缺点:

  1. 随着图片的增大参数量迅速增长 O(n2) O ( n 2 )
    2.而且很多参数都是没什么用的,两个距离非常远的像素点相互其实没有什么关联,不需要把它们放在一起做乘加

卷积层使用步长为一的原因:
尽量在卷积层不丢失信息,只负责数据的变换,而降采样只由pooling层负责,使得这两个层之间是orthogonal,方便调参。

内存和计算时间大部分在卷积层(反向传播是需要使用中间数据计算链式求导的中间数据),而参数大多数都在FC层

瓶颈大多在于内存:

  1. 每一层所产生中中间结果(计算反向传播时使用),在测试时可以不用存储
  2. 参数的存储,如果使用带有移动平均的优化方式还有多存出几倍的参数量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值