梯度的计算与证明

偏导数偏导数就是一个多元函数沿相应坐标轴的变化率的函数。计算: 把其他的变量当作常数然后对变量求导即可。方向导数多元函数沿某一个方向变化率的函数。 这个方向由一个单位向量(cosα,cosβ,...)(cos⁡α,cos⁡β,...)(\cos\alpha,\cos \beta,...)给出。 表示这个单位向量与各个坐标轴的夹角。 方向导数就等于偏导数与方向向量的内积,这个...
摘要由CSDN通过智能技术生成

偏导数

偏导数就是一个多元函数沿相应坐标轴的变化率的函数。

计算:
把其他的变量当作常数然后对变量求导即可。

方向导数

多元函数沿某一个方向变化率的函数。
这个方向由一个单位向量 (cos

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
梯度下降算法是一种用于优化目标函数的迭代算法,其核心思想是沿着目标函数下降速度最快的方向进行迭代更新,直到达到最小值。 在数学上,梯度下降算法可以用微积分的方法来进行证明。假设目标函数为 $f(x)$,我们要求解其最小值。梯度下降算法的更新公式为: $$x_{n+1} = x_n - \alpha \nabla f(x_n)$$ 其中,$x_n$ 是第 $n$ 次迭代的解,$\alpha$ 是学习率,$\nabla f(x_n)$ 是 $f(x_n)$ 在 $x_n$ 处的梯度梯度的意义是函数在该点处变化最快的方向。 我们可以通过微积分来证明梯度下降算法的正确性。首先,我们可以把 $f(x)$ 在 $x_n$ 处进行泰勒展开: $$f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n) \cdot \nabla f(x_n) + O(||x_{n+1}-x_n||^2)$$ 这里的 $O(||x_{n+1}-x_n||^2)$ 表示高阶项,可以忽略不计。由于梯度下降算法是沿着梯度的方向进行迭代更新的,即 $x_{n+1}-x_n = -\alpha \nabla f(x_n)$,因此: $$f(x_{n+1}) = f(x_n) - \alpha ||\nabla f(x_n)||^2 + O(\alpha^2)$$ 这里的 $O(\alpha^2)$ 表示高阶项,同样可以忽略不计。由于我们要求解的是目标函数的最小值,因此我们需要让 $f(x_{n+1})$ 小于 $f(x_n)$。因此,我们可以得到: $$f(x_{n+1}) \leq f(x_n) - \frac{1}{2\alpha} ||\nabla f(x_n)||^2$$ 这里的 $\frac{1}{2\alpha}$ 是为了方便计算。我们可以看到,当学习率 $\alpha$ 越大时,更新后的 $f(x_{n+1})$ 变化越大,但是更新后的 $f(x_{n+1})$ 与 $f(x_n)$ 的差值也会越大。因此,我们需要选择一个合适的学习率,使得更新后的 $f(x_{n+1})$ 变化不会太大,但是又能保证 $f(x_{n+1})$ 比 $f(x_n)$ 更小。 综上所述,我们可以通过微积分的方法证明梯度下降算法的正确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值