变分法的一些例子
泛函
函数到数的映射就是泛函,考虑一维情形的泛函
I [ y ] = ∫ a b F ( x , y , y ˙ ) d x I[y]=\int_a^b F(x, y, \dot y) dx I[y]=∫abF(x,y,y˙)dx
其中 I [ y ] I[y] I[y]表示映射函数 y ( x ) y(x) y(x)到一个实数的泛函 I I I,这里用 y ˙ \dot y y˙表示 d y d x \frac{dy}{dx} dxdy
如果对函数加一些约束,例如 y ( a ) y(a) y(a) 和 y ( b ) y(b) y(b) 的值是给定的,此时想要求解 I [ y ] I[y] I[y] 的极值,就需要用变分法
变分法
定义 δ J [ y ] \delta J[y] δJ[y] 是 J [ y + ϵ y 1 ] − J [ y ] ( ϵ → 0 ) J[y+\epsilon y_1]-J[y] (\epsilon\to 0) J[y+ϵy1]−J[y](ϵ→0) 的关于 ϵ \epsilon ϵ 的一阶主项,其中 y 1 ( a ) = y 1 ( b ) = 0 y_1(a)=y_1(b)=0 y1(a)=y1(b)=0, 这样 y + ϵ y 1 y+\epsilon y_1 y+ϵy1仍然满足边界约束。
那么,与微分相似的是,变分有某些运算性质,而且极值点变分为0。
δ I [ y ] = ∫ a b δ F ( x , y , y ˙ ) d x = ∫ a b ( F y ( x , y , y ˙ ) δ y + F y ˙ ( x , y , y ˙ ) δ y ˙ ) d x \delta I[y]=\int_a^b \delta F(x, y, \dot y) dx=\int_a^b \big( F_y(x, y, \dot y)\delta y+ F_{\dot y}(x, y, \dot y)\delta \dot y \big) dx δI[y]=∫abδF(x,y,y˙)dx=∫ab(Fy(x,y,y˙)δy+Fy˙(x,y,y˙)δy˙)dx
这里注意 δ ( x ) = 0 \delta(x)=0 δ(x)=0, x x x这个映射到自身的函数变分是0,同理 δ ( d x ) = 0 \delta(dx)=0 δ(dx)=0
另外,微分和变分是可以对易的,用量子力学或者理论力学的说法, [ δ , d d x ] = 0 [\delta, \frac{d}{dx}]=0 [δ,dxd]=0
δ d d x J [ y ] = δ ( J [ y ( x + d x ) ] − J [ y ( x ) ] d x ) = δ ( J [ y ( x + d x ) ] − J [ y ( x ) ] ) d x \delta \frac{d}{dx} J[y]=\delta (\frac{J[y(x+dx)]-J[y(x)]}{dx})=\frac{\delta (J[y(x+dx)]-J[y(x)])}{dx} δdxdJ[y]=δ(dxJ[y(x+dx)]−J[y(x)])=dxδ(J[y(x+dx)]−J[y(x)])
而 δ ( J [ y ( x + d x ) ] − J [ y ( x ) ] ) = δ J [ y ( x + d x ) ] − δ J [ y ( x ) ] = ( J [ y ( x + d x ) + ϵ y 1 ( x + d x ) ] − J [ y ( x + d x ) ] ) − ( J [ y ( x ) + ϵ y 1 ( x ) ] − J [ y ( x ) ] ) = ( J [ y ( x + d x ) + ϵ y 1 ( x + d x ) ] − J [ y ( x ) + ϵ y 1 ( x ) ] ) − ( J [ y ( x + d x ) ] − J [ y ( x ) ] ) = δ J [ y ( x + d x ) ] − δ J [ y ( x ) ] = d ( δ J [ y ( x ) ] ) = d δ J [ y ] \delta (J[y(x+dx)]-J[y(x)])=\delta J[y(x+dx)]- \delta J[y(x)]=(J[y(x+dx)+\epsilon y_1(x+dx)]-J[y(x+dx)])-(J[y(x)+\epsilon y_1(x)]-J[y(x)])=(J[y(x+dx)+\epsilon y_1(x+dx)]-J[y(x)+\epsilon y_1(x)])-(J[y(x+dx)]-J[y(x)])=\delta J[y(x+dx)]-\delta J[y(x)]=d(\delta J[y(x)])=d\delta J[y] δ(J[y(x+dx)]−J[y(x)])=δJ[y(x+dx)]−δJ[y(x)]=(J[y(x+dx)+ϵy1(x+dx)]−J[y(x+dx)])−(J[y(x)+ϵy1(x)