变分法的一些例子

本文详细介绍了变分法的一些实例,包括泛函、拉格朗日乘子法、最大熵原理以及理论力学的哈密顿原理。通过欧拉-拉格朗日方程,解释了如何寻找函数的极值。此外,还讨论了费马原理在几何光学中的应用,以及测地线在黎曼几何和球面几何中的表现。文章深入浅出地展示了变分法在不同学科中的重要性。
摘要由CSDN通过智能技术生成

变分法的一些例子

泛函

函数到数的映射就是泛函,考虑一维情形的泛函
I [ y ] = ∫ a b F ( x , y , y ˙ ) d x I[y]=\int_a^b F(x, y, \dot y) dx I[y]=abF(x,y,y˙)dx
其中 I [ y ] I[y] I[y]表示映射函数 y ( x ) y(x) y(x)到一个实数的泛函 I I I,这里用 y ˙ \dot y y˙表示 d y d x \frac{dy}{dx} dxdy
如果对函数加一些约束,例如 y ( a ) y(a) y(a) y ( b ) y(b) y(b) 的值是给定的,此时想要求解 I [ y ] I[y] I[y] 的极值,就需要用变分法

变分法

定义 δ J [ y ] \delta J[y] δJ[y] J [ y + ϵ y 1 ] − J [ y ] ( ϵ → 0 ) J[y+\epsilon y_1]-J[y] (\epsilon\to 0) J[y+ϵy1]J[y](ϵ0) 的关于 ϵ \epsilon ϵ 的一阶主项,其中 y 1 ( a ) = y 1 ( b ) = 0 y_1(a)=y_1(b)=0 y1(a)=y1(b)=0, 这样 y + ϵ y 1 y+\epsilon y_1 y+ϵy1仍然满足边界约束。
那么,与微分相似的是,变分有某些运算性质,而且极值点变分为0。
δ I [ y ] = ∫ a b δ F ( x , y , y ˙ ) d x = ∫ a b ( F y ( x , y , y ˙ ) δ y + F y ˙ ( x , y , y ˙ ) δ y ˙ ) d x \delta I[y]=\int_a^b \delta F(x, y, \dot y) dx=\int_a^b \big( F_y(x, y, \dot y)\delta y+ F_{\dot y}(x, y, \dot y)\delta \dot y \big) dx δI[y]=abδF(x,y,y˙)dx=ab(Fy(x,y,y˙)δy+Fy˙(x,y,y˙)δy˙)dx
这里注意 δ ( x ) = 0 \delta(x)=0 δ(x)=0 x x x这个映射到自身的函数变分是0,同理 δ ( d x ) = 0 \delta(dx)=0 δ(dx)=0

另外,微分和变分是可以对易的,用量子力学或者理论力学的说法, [ δ , d d x ] = 0 [\delta, \frac{d}{dx}]=0 [δ,dxd]=0
δ d d x J [ y ] = δ ( J [ y ( x + d x ) ] − J [ y ( x ) ] d x ) = δ ( J [ y ( x + d x ) ] − J [ y ( x ) ] ) d x \delta \frac{d}{dx} J[y]=\delta (\frac{J[y(x+dx)]-J[y(x)]}{dx})=\frac{\delta (J[y(x+dx)]-J[y(x)])}{dx} δdxdJ[y]=δ(dxJ[y(x+dx)]J[y(x)])=dxδ(J[y(x+dx)]J[y(x)])
δ ( J [ y ( x + d x ) ] − J [ y ( x ) ] ) = δ J [ y ( x + d x ) ] − δ J [ y ( x ) ] = ( J [ y ( x + d x ) + ϵ y 1 ( x + d x ) ] − J [ y ( x + d x ) ] ) − ( J [ y ( x ) + ϵ y 1 ( x ) ] − J [ y ( x ) ] ) = ( J [ y ( x + d x ) + ϵ y 1 ( x + d x ) ] − J [ y ( x ) + ϵ y 1 ( x ) ] ) − ( J [ y ( x + d x ) ] − J [ y ( x ) ] ) = δ J [ y ( x + d x ) ] − δ J [ y ( x ) ] = d ( δ J [ y ( x ) ] ) = d δ J [ y ] \delta (J[y(x+dx)]-J[y(x)])=\delta J[y(x+dx)]- \delta J[y(x)]=(J[y(x+dx)+\epsilon y_1(x+dx)]-J[y(x+dx)])-(J[y(x)+\epsilon y_1(x)]-J[y(x)])=(J[y(x+dx)+\epsilon y_1(x+dx)]-J[y(x)+\epsilon y_1(x)])-(J[y(x+dx)]-J[y(x)])=\delta J[y(x+dx)]-\delta J[y(x)]=d(\delta J[y(x)])=d\delta J[y] δ(J[y(x+dx)]J[y(x)])=δJ[y(x+dx)]δJ[y(x)]=(J[y(x+dx)+ϵy1(x+dx)]J[y(x+dx)])(J[y(x)+ϵy1(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值