变分问题证明题

变分问题

题目一

( I I I) 对于泛函 J ( v ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − ∫ Ω f v d x J(v)=\frac{1}{2}\int|\nabla v|^2dx-\int_{\Omega}fvdx J(v)=21∣∇v2dxΩfvdx,求 u u u 使得 J ( u ) = m i n v ∈ H 0 1 ( Ω ) J ( v ) J(u)=min_{v\in H_{0}^{1}(\Omega)}J(v) J(u)=minvH01(Ω)J(v) 的解

( I I II II) 求 u ∈ H 0 1 ( Ω ) , s . t . u\in H_{0}^{1}(\Omega), s.t. uH01(Ω),s.t. ∫ Ω ∇ v ⋅ ∇ u d x = ∫ Ω v f d x ,   ∀ v ∈ H 0 1 ( Ω ) \int_{\Omega}\nabla v\cdot \nabla udx=\int_{\Omega} vfdx,\ \forall v\in H_{0}^{1}(\Omega) Ωvudx=Ωvfdx, vH01(Ω)

( I I I III III) 求 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) , s . t .    u u\in C^{2}(\Omega)\cap C_{0}^{1}(\Omega), s.t. \ \ u uC2(Ω)C01(Ω),s.t.  u 满足 P o i s s o n Poisson Poisson 方程的 D i r i c h l e t Dirichlet Dirichlet 问题

题目:
(1) 请证明 ( I I I) 和 ( I I II II) 相互等价
(2) 请写出 P o i s s o n Poisson Poisson 方程的 D i r i c h l e t Dirichlet Dirichlet 问题,并证明若 ( I I II II) 的解 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u\in C^{2}(\Omega)\cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω),则 ( I I II II) 与 ( I I I III III) 等价

解:

(1)为了证明命题 ( I I I) 和 ( I I II II) 相互等价,我们需要证明以下两个方向的充分必要性:

  1. ( I I I) ⇒ \Rightarrow ( I I II II):若 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,则 u u u 满足弱形式的泊松方程。
  2. ( I I II II) ⇒ \Rightarrow ( I I I):若 u u u 满足弱形式的泊松方程,则 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点。

( I I I) ⇒ \Rightarrow ( I I II II)

假设 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
J ( u ) ≤ J ( v ) J(u) \leq J(v) J(u)J(v)

考虑 J ( u + ϵ ϕ ) J(u + \epsilon\phi) J(u+ϵϕ),其中 ϵ \epsilon ϵ 是一个实数, ϕ ∈ H 0 1 ( Ω ) \phi \in H_{0}^{1}(\Omega) ϕH01(Ω)。由于 u u u 是极小值点,我们有
J ( u ) ≤ J ( u + ϵ ϕ ) J(u) \leq J(u + \epsilon\phi) J(u)J(u+ϵϕ)

展开 J ( u + ϵ ϕ ) J(u + \epsilon\phi) J(u+ϵϕ),得到
1 2 ∫ ∣ ∇ ( u + ϵ ϕ ) ∣ 2 d x − ∫ f ( u + ϵ ϕ ) d x \frac{1}{2}\int |\nabla (u + \epsilon\phi)|^2 dx - \int f(u +\epsilon\phi) dx 21∣∇(u+ϵϕ)2dxf(u+ϵϕ)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 ) d x − ∫ f u d x − ϵ ∫ f ϕ d x = \frac{1}{2}\int (|\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2) dx - \int fu dx - \epsilon\int f\phi dx =21(∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2)dxfudxϵfϕdx

ϵ \epsilon ϵ 求导并在 ϵ = 0 \epsilon=0 ϵ=0 处取值,得到
∫ ∇ u ⋅ ∇ ϕ d x − ∫ f ϕ d x = 0 \int \nabla u \cdot \nabla \phi dx - \int f\phi dx = 0 uϕdxfϕdx=0

由于 ϕ \phi ϕ 是任意的,我们得到
∫ ∇ u ⋅ ∇ v d x = ∫ f v d x ,   ∀ v ∈ H 0 1 ( Ω ) \int \nabla u \cdot \nabla v dx = \int fv dx, \ \forall v \in H_{0}^{1}(\Omega) uvdx=fvdx, vH01(Ω)

这证明了 ( I I I) ⇒ \Rightarrow ( I I II II)。

附注 ∣ ∇ ( u + ϵ ϕ ) ∣ 2 = ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 |\nabla (u + \epsilon\phi)|^2 = |\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2 ∣∇(u+ϵϕ)2=∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2

这个等式的推导过程利用了梯度算子的线性性质和内积的性质。具体来说:

  1. 梯度的线性性质:对于任意函数 u u u ϕ \phi ϕ,以及任意实数 ϵ \epsilon ϵ,我们有
    ∇ ( u + ϵ ϕ ) = ∇ u + ϵ ∇ ϕ \nabla(u + \epsilon\phi) = \nabla u + \epsilon\nabla \phi (u+ϵϕ)=u+ϵϕ

  2. 内积的性质:对于任意向量 a \mathbf{a} a b \mathbf{b} b,我们有
    ∣ a + b ∣ 2 = a ⋅ a + 2 a ⋅ b + b ⋅ b |\mathbf{a} + \mathbf{b}|^2 = \mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} a+b2=aa+2ab+bb

结合上述两点,我们可以推导出等式:

∣ ∇ ( u + ϵ ϕ ) ∣ 2 = ∣ ∇ u + ϵ ∇ ϕ ∣ 2 |\nabla (u + \epsilon\phi)|^2 = |\nabla u + \epsilon\nabla \phi|^2 ∣∇(u+ϵϕ)2=∣∇u+ϵϕ2
= ( ∇ u + ϵ ∇ ϕ ) ⋅ ( ∇ u + ϵ ∇ ϕ ) =(\nabla u + \epsilon\nabla \phi) \cdot (\nabla u + \epsilon\nabla \phi) =(u+ϵϕ)(u+ϵϕ)
= ∇ u ⋅ ∇ u + 2 ϵ ( ∇ u ⋅ ∇ ϕ ) + ϵ 2 ( ∇ ϕ ⋅ ∇ ϕ ) =\nabla u \cdot \nabla u + 2\epsilon(\nabla u \cdot \nabla \phi) + \epsilon^2(\nabla \phi \cdot \nabla \phi) =uu+2ϵ(uϕ)+ϵ2(ϕϕ)
= ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 =|\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2 =∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2

因此,这个等式的推导过程主要用到了梯度算子的线性性质和内积的基本性质。

附注

当然可以。这一部分的关键在于使用了泛函的一阶变分原理,即如果 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,那么 J ( v ) J(v) J(v) u u u 处的一阶变分应该为零。具体到这个问题中,我们考虑 J ( u + ϵ ϕ ) J(u + \epsilon\phi) J(u+ϵϕ) 关于 ϵ \epsilon ϵ 的导数,并在 ϵ = 0 \epsilon = 0 ϵ=0 处取值。

首先,我们有
J ( u + ϵ ϕ ) = 1 2 ∫ ∣ ∇ ( u + ϵ ϕ ) ∣ 2 d x − ∫ f ( u + ϵ ϕ ) d x J(u + \epsilon\phi) = \frac{1}{2}\int |\nabla (u + \epsilon\phi)|^2 dx - \int f(u + \epsilon\phi) dx J(u+ϵϕ)=21∣∇(u+ϵϕ)2dxf(u+ϵϕ)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 ) d x − ∫ f u d x − ϵ ∫ f ϕ d x = \frac{1}{2}\int (|\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2) dx - \int fu dx - \epsilon\int f\phi dx =21(∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2)dxfudxϵfϕdx

接下来,我们对 ϵ \epsilon ϵ 求导。注意到 ∣ ∇ u ∣ 2 |\nabla u|^2 ∣∇u2 ∫ f u d x \int fu dx fudx ϵ \epsilon ϵ 无关,所以它们的导数为零。因此,我们有
d d t J ( u + ϵ ϕ ) = 1 2 ∫ ( 2 ∇ u ⋅ ∇ ϕ + 2 ϵ ∣ ∇ ϕ ∣ 2 ) d x − ∫ f ϕ d x \frac{d}{dt}J(u +\epsilon\phi) = \frac{1}{2}\int (2\nabla u \cdot \nabla \phi + 2\epsilon|\nabla \phi|^2) dx - \int f\phi dx dtdJ(u+ϵϕ)=21(2∇uϕ+2ϵ∣∇ϕ2)dxfϕdx
= ∫ ∇ u ⋅ ∇ ϕ d x + ϵ ∫ ∣ ∇ ϕ ∣ 2 d x − ∫ f ϕ d x = \int \nabla u \cdot \nabla \phi dx + \epsilon\int |\nabla \phi|^2 dx - \int f\phi dx =uϕdx+ϵ∣∇ϕ2dxfϕdx

现在,我们在 ϵ = 0 \epsilon = 0 ϵ=0 处取值,得到
d d t J ( u + ϵ ϕ ) ∣ t = 0 = ∫ ∇ u ⋅ ∇ ϕ d x − ∫ f ϕ d x \left.\frac{d}{dt}J(u +\epsilon\phi)\right|_{t=0} = \int \nabla u \cdot \nabla \phi dx - \int f\phi dx dtdJ(u+ϵϕ) t=0=uϕdxfϕdx

根据一阶变分原理,由于 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,这个导数应该为零。因此,我们得到
∫ ∇ u ⋅ ∇ ϕ d x − ∫ f ϕ d x = 0 \int \nabla u \cdot \nabla \phi dx - \int f\phi dx = 0 uϕdxfϕdx=0

这就是我们想要证明的结果。这个结果表明,如果 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,那么 u u u 必须满足上述积分等式,这正是弱形式的泊松方程。

( I I II II) ⇒ \Rightarrow ( I I I)

假设 u u u 满足弱形式的泊松方程,即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
∫ ∇ u ⋅ ∇ v d x = ∫ f v d x \int \nabla u \cdot \nabla v dx = \int fv dx uvdx=fvdx

我们需要证明 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点。考虑任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),令 w = v − u w = v - u w=vu,则有
J ( v ) − J ( u ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f ( v − u ) d x J(v) - J(u) = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int f(v - u) dx J(v)J(u)=21∣∇v2dx21∣∇u2dxf(vu)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 ) d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x = \frac{1}{2}\int (|\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2) dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx =21(∣∇u2+2∇uw+∣∇w2)dx21∣∇u2dxfwdx
= ∫ ∇ u ⋅ ∇ w d x + 1 2 ∫ ∣ ∇ w ∣ 2 d x − ∫ f w d x = \int \nabla u \cdot \nabla w dx + \frac{1}{2}\int |\nabla w|^2 dx - \int fw dx =uwdx+21∣∇w2dxfwdx
= 1 2 ∫ ∣ ∇ w ∣ 2 d x = \frac{1}{2}\int |\nabla w|^2 dx =21∣∇w2dx
= 1 2 ∫ ∣ ∇ ( v − u ) ∣ 2 d x ≥ 0 = \frac{1}{2}\int |\nabla (v - u)|^2 dx \geq 0 =21∣∇(vu)2dx0

因此,对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),都有 J ( v ) ≥ J ( u ) J(v) \geq J(u) J(v)J(u),即 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点。

附注 这一步骤的详细推导
J ( v ) − J ( u ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f ( v − u ) d x J(v) - J(u) = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int f(v - u) dx J(v)J(u)=21∣∇v2dx21∣∇u2dxf(vu)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 ) d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x = \frac{1}{2}\int (|\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2) dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx =21(∣∇u2+2∇uw+∣∇w2)dx21∣∇u2dxfwdx
这一步骤的关键在于利用了梯度的线性性质和内积的性质来展开和重组积分项。具体来说:

首先,我们有 w = v − u w = v - u w=vu,因此 ∇ w = ∇ v − ∇ u \nabla w = \nabla v - \nabla u w=vu

然后,我们考虑泛函 J ( v ) J(v) J(v) J ( u ) J(u) J(u) 的差:
J ( v ) − J ( u ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − ∫ f v d x − ( 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f u d x ) J(v) - J(u) = \frac{1}{2}\int |\nabla v|^2 dx - \int fv dx - \left(\frac{1}{2}\int |\nabla u|^2 dx - \int fu dx\right) J(v)J(u)=21∣∇v2dxfvdx(21∣∇u2dxfudx)
= 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f ( v − u ) d x = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int f(v - u) dx =21∣∇v2dx21∣∇u2dxf(vu)dx
= 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx =21∣∇v2dx21∣∇u2dxfwdx (因为 v − u = w v - u = w vu=w

接下来,我们利用 ∇ v = ∇ u + ∇ w \nabla v = \nabla u + \nabla w v=u+w 来展开 ∣ ∇ v ∣ 2 |\nabla v|^2 ∣∇v2
∣ ∇ v ∣ 2 = ∣ ∇ u + ∇ w ∣ 2 = ( ∇ u + ∇ w ) ⋅ ( ∇ u + ∇ w ) |\nabla v|^2 = |\nabla u + \nabla w|^2 = (\nabla u + \nabla w) \cdot (\nabla u + \nabla w) ∣∇v2=∣∇u+w2=(u+w)(u+w)
= ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 = |\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2 =∣∇u2+2∇uw+∣∇w2

因此,我们有
J ( v ) − J ( u ) = 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 ) d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x J(v) - J(u) = \frac{1}{2}\int (|\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2) dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx J(v)J(u)=21(∣∇u2+2∇uw+∣∇w2)dx21∣∇u2dxfwdx

这就是我们想要证明的等式。这个等式展示了如何通过引入差函数 w = v − u w = v - u w=vu 来重组泛函 J ( v ) J(v) J(v) J ( u ) J(u) J(u) 的差,并利用梯度的线性性质和内积的性质来简化表达式。

这证明了 ( I I II II) ⇒ \Rightarrow ( I I I)。

综上所述,我们证明了命题 ( I I I) 和 ( I I II II) 相互等价。

附注 这一步骤的详细推导
∫ ∇ u ⋅ ∇ w d x + 1 2 ∫ ∣ ∇ w ∣ 2 d x − ∫ f w d x \int \nabla u \cdot \nabla w dx + \frac{1}{2}\int |\nabla w|^2 dx - \int fw dx uwdx+21∣∇w2dxfwdx
= 1 2 ∫ ∣ ∇ w ∣ 2 d x = \frac{1}{2}\int |\nabla w|^2 dx =21∣∇w2dx

当然可以。这一步的关键在于利用 u u u 满足弱形式的泊松方程这一条件来简化表达式。具体来说:

我们已经知道 u u u 满足弱形式的泊松方程,即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
∫ ∇ u ⋅ ∇ v d x = ∫ f v d x \int \nabla u \cdot \nabla v dx = \int fv dx uvdx=fvdx

由于 w = v − u ∈ H 0 1 ( Ω ) w = v - u \in H_{0}^{1}(\Omega) w=vuH01(Ω)(因为 H 0 1 ( Ω ) H_{0}^{1}(\Omega) H01(Ω) 是一个线性空间),我们可以将 w w w 代入上述弱形式的泊松方程中,得到
∫ ∇ u ⋅ ∇ w d x = ∫ f w d x \int \nabla u \cdot \nabla w dx = \int fw dx uwdx=fwdx

因此,我们可以将 ∫ ∇ u ⋅ ∇ w d x − ∫ f w d x \int \nabla u \cdot \nabla w dx - \int fw dx uwdxfwdx 这一项简化为 0 0 0。所以,我们有
∫ ∇ u ⋅ ∇ w d x + 1 2 ∫ ∣ ∇ w ∣ 2 d x − ∫ f w d x \int \nabla u \cdot \nabla w dx + \frac{1}{2}\int |\nabla w|^2 dx - \int fw dx uwdx+21∣∇w2dxfwdx
= 0 + 1 2 ∫ ∣ ∇ w ∣ 2 d x = 0 + \frac{1}{2}\int |\nabla w|^2 dx =0+21∣∇w2dx
= 1 2 ∫ ∣ ∇ w ∣ 2 d x = \frac{1}{2}\int |\nabla w|^2 dx =21∣∇w2dx

这就是我们想要证明的等式。这个等式表明,如果 u u u 满足弱形式的泊松方程,那么泛函 J ( v ) J(v) J(v) J ( u ) J(u) J(u) 的差可以简化为 1 2 ∫ ∣ ∇ w ∣ 2 d x \frac{1}{2}\int |\nabla w|^2 dx 21∣∇w2dx,这是一个非负的量,因为它是一个积分的平方项。这个结果对于证明 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点是至关重要的。

(2)
为了证明命题 ( I I II II) 和 ( I I I III III) 相互等价,我们需要证明以下两个方向的充分必要性:

  1. ( I I II II) ⇒ \Rightarrow ( I I I III III):若 u ∈ H 0 1 ( Ω ) u \in H_{0}^{1}(\Omega) uH01(Ω) 是命题 ( I I II II) 的解,并且 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω),则 u u u 满足 Poisson 方程的 Dirichlet 问题。
  2. ( I I I III III) ⇒ \Rightarrow ( I I II II):若 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω) 满足 Poisson 方程的 Dirichlet 问题,则 u u u 是命题 ( I I II II) 的解。

( I I II II) ⇒ \Rightarrow ( I I I III III)

假设 u ∈ H 0 1 ( Ω ) u \in H_{0}^{1}(\Omega) uH01(Ω) 是命题 ( I I II II) 的解,并且 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω)。即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
∫ Ω ∇ v ⋅ ∇ u d x = ∫ Ω v f d x \int_{\Omega} \nabla v \cdot \nabla u dx = \int_{\Omega} vfdx Ωvudx=Ωvfdx

由于 u ∈ C 2 ( Ω ) u \in C^{2}(\Omega) uC2(Ω),我们可以利用 Green 公式将左边的积分转换为
∫ Ω ∇ v ⋅ ∇ u d x = − ∫ Ω v Δ u d x + ∫ ∂ Ω v ∂ u ∂ n d S \int_{\Omega} \nabla v \cdot \nabla u dx = -\int_{\Omega} v\Delta u dx + \int_{\partial\Omega} v \frac{\partial u}{\partial n} dS Ωvudx=ΩvΔudx+ΩvnudS

由于 u ∈ C 0 1 ( Ω ) u \in C_{0}^{1}(\Omega) uC01(Ω),即 u u u ∂ Ω \partial\Omega Ω 上为零,因此边界项消失,我们有
− ∫ Ω v Δ u d x = ∫ Ω v f d x ,   ∀ v ∈ H 0 1 ( Ω ) -\int_{\Omega} v\Delta u dx = \int_{\Omega} vfdx, \ \forall v \in H_{0}^{1}(\Omega) ΩvΔudx=Ωvfdx, vH01(Ω)

由于这个等式对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω) 都成立,我们可以得出 Δ u = − f \Delta u = -f Δu=f Ω \Omega Ω 中成立。结合 u ∈ C 0 1 ( Ω ) u \in C_{0}^{1}(\Omega) uC01(Ω),即 u u u ∂ Ω \partial\Omega Ω 上为零,我们得到 u u u 满足 Poisson 方程的 Dirichlet 问题。

( I I I III III) ⇒ \Rightarrow ( I I II II)

假设 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω) 满足 Poisson 方程的 Dirichlet 问题,即
{ Δ u = − f in  Ω u = 0 on  ∂ Ω \begin{cases} \Delta u = -f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases} {Δu=fu=0in Ωon Ω

我们需要证明 u u u 是命题 ( I I II II) 的解。对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),利用 Green 公式,我们有
∫ Ω ∇ v ⋅ ∇ u d x = − ∫ Ω v Δ u d x + ∫ ∂ Ω v ∂ u ∂ n d S \int_{\Omega} \nabla v \cdot \nabla u dx = -\int_{\Omega} v\Delta u dx + \int_{\partial\Omega} v \frac{\partial u}{\partial n} dS Ωvudx=ΩvΔudx+ΩvnudS

由于 u u u 满足 Dirichlet 边界条件,即 u = 0 u = 0 u=0 ∂ Ω \partial\Omega Ω 上,边界项消失,我们有
∫ Ω ∇ v ⋅ ∇ u d x = − ∫ Ω v Δ u d x \int_{\Omega} \nabla v \cdot \nabla u dx = -\int_{\Omega} v\Delta u dx Ωvudx=ΩvΔudx

Δ u = − f \Delta u = -f Δu=f 代入上式,得到
∫ Ω ∇ v ⋅ ∇ u d x = ∫ Ω v f d x \int_{\Omega} \nabla v \cdot \nabla u dx = \int_{\Omega} vfdx Ωvudx=Ωvfdx

这证明了 u u u 是命题 ( I I II II) 的解。

综上所述,我们证明了命题 ( I I II II) 和 ( I I I III III) 相互等价,前提是 ( I I II II) 的解 u u u 属于 C 2 ( Ω ) ∩ C 0 1 ( Ω ) C^{2}(\Omega) \cap C_{0}^{1}(\Omega) C2(Ω)C01(Ω)

变分问题解的存在唯一性

Ω \Omega Ω R 2 \mathbb{R}^2 R2 中的一个有界开区域,其光滑边界用 Γ \Gamma Γ 表示。 Ω \Omega Ω 上定义的泛函为:
J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\frac{1}{2}||v||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds其中 σ ∈ C ( Γ ) , g ∈ C ( Γ ) \sigma\in C(\Gamma),g\in C(\Gamma) σC(Γ)gC(Γ),且 0 < σ 0 < σ < σ 1 < + ∞ 0<\sigma_0<\sigma<\sigma_1<+\infty 0<σ0<σ<σ1<+。变分问题的描述为:求 u ∈ H 1 ( Ω ) u\in H^{1}(\Omega) uH1(Ω),使得 J ( u ) = m i n v ∈ H 1 ( Ω ) J ( v ) J(u)=min_{v\in H^{1}(\Omega)}J(v) J(u)=minvH1(Ω)J(v)请详细地证明这个变分问题的解存在并且唯一

∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2 表示函数 v v v H 1 ( Ω ) H_{1}(\Omega) H1(Ω) 空间中的范数的平方。

H 1 ( Ω ) H_{1}(\Omega) H1(Ω) 是一个Sobolev空间,通常用来表示具有某些平滑性的函数空间。对于一个定义在域 Ω \Omega Ω 上的函数 v v v,其在 H 1 ( Ω ) H_{1}(\Omega) H1(Ω) 空间中的范数定义为:

∣ ∣ v ∣ ∣ H 1 ( Ω ) = ( ∫ Ω ∣ v ∣ 2 + ∣ ∇ v ∣ 2   d x ) 1 / 2 ||v||_{H_{1}(\Omega)} = \left( \int_{\Omega} |v|^2 + |\nabla v|^2 \, dx \right)^{1/2} ∣∣vH1(Ω)=(Ωv2+∣∇v2dx)1/2

其中, ∣ v ∣ 2 |v|^2 v2 表示函数 v v v 的平方, ∣ ∇ v ∣ 2 |\nabla v|^2 ∣∇v2 表示 v v v 的梯度的平方(即各个偏导数的平方和), ∫ Ω \int_{\Omega} Ω 表示对整个域 Ω \Omega Ω 的积分。

因此, ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2 就是上述范数的平方,它考虑了函数 v v v 本身的大小和它的变化率(通过梯度)。

证明:
(1) 证明泛函 J J J H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 上有下确界

为了证明泛函 J J J H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 上有下确界,我们需要证明对于任意 v ∈ H 1 ( Ω ) v \in H^{1}(\Omega) vH1(Ω) J ( v ) J(v) J(v) 的值有一个下界。根据泛函 J J J 的定义:

J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||_{H_{1}(\Omega)}^{2} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds

首先,我们考虑泛函的第一部分,即 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2,这是 H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 中元素的平方范数,显然是非负的。所以,这一部分对泛函 J ( v ) J(v) J(v) 的值起着一个非负的贡献。

所以 J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||_{H_{1}(\Omega)}^{2} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds ≥ ∫ Γ ( 1 2 σ v 2 − g v ) d s = ∫ Γ 1 2 ( σ v 2 − 2 σ v ⋅ g 1 σ + g 2 σ ) − g 2 2 σ d s \geq \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds=\int_{\Gamma}\frac{1}{2}(\sigma v^2-2\sqrt{\sigma}v\cdot g\frac{1}{\sqrt{\sigma}}+\frac{g^2}{\sigma})-\frac{g^2}{2\sigma}ds Γ(21σv2gv)ds=Γ21(σv22σ vgσ 1+σg22σg2ds = ∫ Γ 1 2 ( σ v − g 1 σ ) 2 − g 2 2 σ d s =\int_{\Gamma}\frac{1}{2}(\sqrt{\sigma}v-g\frac{1}{\sqrt{\sigma}})^2-\frac{g^2}{2\sigma}ds =Γ21(σ vgσ 1)22σg2ds ≥ − ∫ Γ − 1 2 σ g 2 d s     ( 因为 1 2 ( σ v − g 1 σ ) 2 是非负项 ) \geq- \int_{\Gamma}-\frac{1}{2\sigma}g^2ds\ \ \ (因为\frac{1}{2}(\sqrt{\sigma}v-g\frac{1}{\sqrt{\sigma}})^2是非负项) Γ2σ1g2ds   (因为21(σ vgσ 1)2是非负项)

所以 J J J H 1 ( Ω ) H_1(\Omega) H1(Ω) 有下确界,不妨设 m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) m=\inf_{v\in H^{1}(\Omega)}J(v) m=infvH1(Ω)J(v),那么由下确界的定义, ∀ k ∈ N + ,   ∃ u k ∈ H 1 ( Ω ) \forall k\in\mathbb{N}_+,\ \exists u_{k}\in H^{1}(\Omega) kN+, ukH1(Ω) 使得 m ≤ J ( u k ) = 1 2 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u k 2 − g u k ) d s < m + 1 k m\leq J(u_{k})=\frac{1}{2}||u_{k}||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma u_{k}^2-gu_{k})ds<m+\frac{1}{k} mJ(uk)=21∣∣ukH1(Ω)2+Γ(21σuk2guk)ds<m+k1

根据下确界的性质,对于任意正整数 k k k,总存在一个函数 u k ∈ H 1 ( Ω ) u_k \in H^{1}(\Omega) ukH1(Ω),使得 J ( u k ) J(u_k) J(uk) m m m 大,但是与 m m m 非常接近,即 J ( u k ) < m + 1 k J(u_k) < m + \frac{1}{k} J(uk)<m+k1。这里的 1 k \frac{1}{k} k1 作为一个逐渐趋于零的量,保证了我们可以找到一个 u k u_k uk 使得 J ( u k ) J(u_k) J(uk) 越来越接近 m m m,但是永远不会小于 m m m,因为 m m m 是下确界。

所以,不等式 m ≤ J ( u k ) < m + 1 k m \leq J(u_{k}) < m + \frac{1}{k} mJ(uk)<m+k1 描述了这样一个情况:对于任意给定的 k k k,我们总能找到一个函数 u k u_k uk,使得其对应的泛函值 J ( u k ) J(u_k) J(uk) 既不小于下确界 m m m(保证了 m m m 是下确界的性质),又不超过 m + 1 k m + \frac{1}{k} m+k1(保证了我们可以找到越来越接近 m m m J ( u k ) J(u_k) J(uk) 值)。随着 k k k 的增大, 1 k \frac{1}{k} k1 趋于零, J ( u k ) J(u_k) J(uk) 越来越接近 m m m

(2) 证明 { u k } \{u_k\} {uk} 是基本列从而证明变分问题解的存在性

为了证明函数序列 { u k } \{u_k\} {uk} H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 中的基本列,我们需要证明对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在一个正整数 N N N,使得当 k , l > N k, l > N k,l>N 时,有 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) < ϵ ||u_k - u_l||_{H^1(\Omega)} < \epsilon ∣∣ukulH1(Ω)<ϵ

首先,我们回顾平行四边形公式,在 H 1 ( Ω ) H^1(\Omega) H1(Ω) 中,对于任意的 u , v ∈ H 1 ( Ω ) u, v \in H^1(\Omega) u,vH1(Ω),有:

∣ ∣ u + v ∣ ∣ H 1 ( Ω ) 2 + ∣ ∣ u − v ∣ ∣ H 1 ( Ω ) 2 = 2 ( ∣ ∣ u ∣ ∣ H 1 ( Ω ) 2 + ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ) ||u + v||^2_{H^1(\Omega)} + ||u - v||^2_{H^1(\Omega)} = 2(||u||^2_{H^1(\Omega)} + ||v||^2_{H^1(\Omega)}) ∣∣u+vH1(Ω)2+∣∣uvH1(Ω)2=2(∣∣uH1(Ω)2+∣∣vH1(Ω)2)

现在,考虑序列中的两个元素 u k u_k uk u l u_l ul,我们应用平行四边形公式:

∣ ∣ u k + u l ∣ ∣ H 1 ( Ω ) 2 + ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 = 2 ( ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∣ ∣ u l ∣ ∣ H 1 ( Ω ) 2 ) ||u_k + u_l||^2_{H^1(\Omega)} + ||u_k - u_l||^2_{H^1(\Omega)} = 2(||u_k||^2_{H^1(\Omega)} + ||u_l||^2_{H^1(\Omega)}) ∣∣uk+ulH1(Ω)2+∣∣ukulH1(Ω)2=2(∣∣ukH1(Ω)2+∣∣ulH1(Ω)2)

我们关注的是 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 ||u_k - u_l||^2_{H^1(\Omega)} ∣∣ukulH1(Ω)2,因为这表示了 u k u_k uk u l u_l ul H 1 ( Ω ) H^1(\Omega) H1(Ω) 中的距离。为了证明 { u k } \{u_k\} {uk} 是基本列,我们需要证明这个距离可以任意小。

根据泛函 J J J 的定义,我们有:

J ( u k ) = 1 2 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u k 2 − g u k ) d s J(u_k) = \frac{1}{2}||u_k||^2_{H^1(\Omega)} + \int_{\Gamma}(\frac{1}{2}\sigma u_k^2 - gu_k)ds J(uk)=21∣∣ukH1(Ω)2+Γ(21σuk2guk)ds

因为 u k u_k uk 使得 J ( u k ) J(u_k) J(uk) 接近其下确界 m m m,我们可以推断 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) ||u_k||_{H^1(\Omega)} ∣∣ukH1(Ω) 是有界的,即存在一个常数 M M M,使得对于所有的 k k k,有 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) < M ||u_k||_{H^1(\Omega)} < M ∣∣ukH1(Ω)<M。这是因为如果 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) ||u_k||_{H^1(\Omega)} ∣∣ukH1(Ω) 无界,那么 J ( u k ) J(u_k) J(uk) 也将无界,这与 J ( u k ) J(u_k) J(uk) 接近下确界 m m m 矛盾。

现在,由于 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) ||u_k||_{H^1(\Omega)} ∣∣ukH1(Ω) ∣ ∣ u l ∣ ∣ H 1 ( Ω ) ||u_l||_{H^1(\Omega)} ∣∣ulH1(Ω) 都小于 M M M,我们有:

∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 ≤ 2 ( ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∣ ∣ u l ∣ ∣ H 1 ( Ω ) 2 ) − ∣ ∣ u k + u l ∣ ∣ H 1 ( Ω ) 2 < 4 M 2 − ∣ ∣ u k + u l ∣ ∣ H 1 ( Ω ) 2 ||u_k - u_l||^2_{H^1(\Omega)} \leq 2(||u_k||^2_{H^1(\Omega)} + ||u_l||^2_{H^1(\Omega)}) - ||u_k + u_l||^2_{H^1(\Omega)} < 4M^2 - ||u_k + u_l||^2_{H^1(\Omega)} ∣∣ukulH1(Ω)22(∣∣ukH1(Ω)2+∣∣ulH1(Ω)2)∣∣uk+ulH1(Ω)2<4M2∣∣uk+ulH1(Ω)2

因为 ∣ ∣ u k + u l ∣ ∣ H 1 ( Ω ) 2 ||u_k + u_l||^2_{H^1(\Omega)} ∣∣uk+ulH1(Ω)2 也是有界的(由于 u k u_k uk u l u_l ul 都有界),所以存在一个常数 C C C,使得对于所有的 k k k l l l,有 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 < C ||u_k - u_l||^2_{H^1(\Omega)} < C ∣∣ukulH1(Ω)2<C

最后,对于给定的 ϵ > 0 \epsilon > 0 ϵ>0,我们可以选择 N N N 足够大,使得当 k , l > N k, l > N k,l>N 时, ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 < ϵ 2 ||u_k - u_l||^2_{H^1(\Omega)} < \epsilon^2 ∣∣ukulH1(Ω)2<ϵ2,因此 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) < ϵ ||u_k - u_l||_{H^1(\Omega)} < \epsilon ∣∣ukulH1(Ω)<ϵ

综上所述,我们证明了函数序列 { u k } \{u_k\} {uk} H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 中的基本列。

(3) 变分问题解的唯一性证明

为了证明变分问题解的唯一性,我们需要证明如果存在两个不同的函数 u , v ∈ H 1 ( Ω ) u, v \in H^1(\Omega) u,vH1(Ω) 使得 J ( u ) = J ( v ) = m J(u) = J(v) = m J(u)=J(v)=m,其中 m m m 是泛函 J J J 的最小值,那么必须有 u = v u = v u=v

假设存在这样的两个不同的函数 u u u v v v。我们首先利用 J J J 的定义写出 J ( u ) J(u) J(u) J ( v ) J(v) J(v)

J ( u ) = 1 2 ∣ ∣ u ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u 2 − g u ) d s J(u) = \frac{1}{2}||u||^2_{H^1(\Omega)} + \int_{\Gamma}(\frac{1}{2}\sigma u^2 - gu)ds J(u)=21∣∣uH1(Ω)2+Γ(21σu2gu)ds
J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||^2_{H^1(\Omega)} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds

由于 u u u v v v 都是 J J J 的最小值点,我们有 J ( u ) = J ( v ) = m J(u) = J(v) = m J(u)=J(v)=m

现在,考虑函数 u + v 2 \frac{u + v}{2} 2u+v,它也属于 H 1 ( Ω ) H^1(\Omega) H1(Ω)。根据泛函 J J J 的凸性,我们有:

J ( u + v 2 ) ≤ 1 2 J ( u ) + 1 2 J ( v ) = m J\left(\frac{u + v}{2}\right) \leq \frac{1}{2}J(u) + \frac{1}{2}J(v) = m J(2u+v)21J(u)+21J(v)=m

另一方面,由于 m m m J J J 的最小值,我们必须有 J ( u + v 2 ) ≥ m J\left(\frac{u + v}{2}\right) \geq m J(2u+v)m。因此,我们得到 J ( u + v 2 ) = m J\left(\frac{u + v}{2}\right) = m J(2u+v)=m

现在,我们利用 J J J 的定义和平行四边形公式来写出 J ( u + v 2 ) J\left(\frac{u + v}{2}\right) J(2u+v)

J ( u + v 2 ) = 1 2 ∣ ∣ u + v 2 ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ ( u + v 2 ) 2 − g u + v 2 ) d s J\left(\frac{u + v}{2}\right) = \frac{1}{2}||\frac{u + v}{2}||^2_{H^1(\Omega)} + \int_{\Gamma}\left(\frac{1}{2}\sigma \left(\frac{u + v}{2}\right)^2 - g\frac{u + v}{2}\right)ds J(2u+v)=21∣∣2u+vH1(Ω)2+Γ(21σ(2u+v)2g2u+v)ds

= 1 8 ∣ ∣ u + v ∣ ∣ H 1 ( Ω ) 2 + 1 8 ∣ ∣ u − v ∣ ∣ H 1 ( Ω ) 2 + 1 2 J ( u ) + 1 2 J ( v ) − 1 8 ∣ ∣ u − v ∣ ∣ H 1 ( Ω ) 2 = \frac{1}{8}||u + v||^2_{H^1(\Omega)} + \frac{1}{8}||u - v||^2_{H^1(\Omega)} + \frac{1}{2}J(u) + \frac{1}{2}J(v) - \frac{1}{8}||u - v||^2_{H^1(\Omega)} =81∣∣u+vH1(Ω)2+81∣∣uvH1(Ω)2+21J(u)+21J(v)81∣∣uvH1(Ω)2

= m + 1 8 ∣ ∣ u − v ∣ ∣ H 1 ( Ω ) 2 = m + \frac{1}{8}||u - v||^2_{H^1(\Omega)} =m+81∣∣uvH1(Ω)2

由于 J ( u + v 2 ) = m J\left(\frac{u + v}{2}\right) = m J(2u+v)=m,我们必须有 ∣ ∣ u − v ∣ ∣ H 1 ( Ω ) 2 = 0 ||u - v||^2_{H^1(\Omega)} = 0 ∣∣uvH1(Ω)2=0,这意味着 u = v u = v u=v

因此,我们证明了变分问题解的唯一性。

(4) 推导出等价的边值问题

{ Δ u = 0 in  Ω , ∂ u ∂ n + σ u = g on  Γ . \begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial n} + \sigma u = g & \text{on } \Gamma. \end{cases} {Δu=0nu+σu=gin Ω,on Γ.

位势方程的解的最大值最小值问题

Ω = { ( x , y ) ∣ x 2 + y 2 < π 2 4 } \Omega=\{(x,y)|x^2+y^2<\frac{\pi^2}{4}\} Ω={(x,y)x2+y2<4π2} u ∈ C ( Q ‾ ) ∩ C 2 ( Ω ) u\in C(\overline{Q})\cap C^2(\Omega) uC(Q)C2(Ω) 是下面这个定解问题的解,请求解 u u u Q ‾ \overline{Q} Q 上的最大值和最小值
{ Δ u = u x x + u y y = 0 , ( x , y ) ∈ Ω u = sin ⁡ x , ( x , y ) ∈ ∂ Ω \left\{ \begin{aligned} &\Delta u=u_{xx}+u_{yy}=0, (x,y)\in\Omega \\ &u = \sin x, (x,y)\in\partial \Omega \end{aligned} \right. {Δu=uxx+uyy=0,(x,y)Ωu=sinx,(x,y)Ω

这是一个定义在圆形区域 Ω \Omega Ω 上的二维泊松方程定解问题,其中 Ω \Omega Ω 是以原点为中心,半径为 π 2 \frac{\pi}{2} 2π 的圆形区域,边界条件是在 Ω \Omega Ω 的边界上 u u u 等于 sin ⁡ x \sin x sinx

由于 Δ u = 0 \Delta u = 0 Δu=0 u u u Ω \Omega Ω 上的调和函数。根据最大值原理,调和函数在其定义域内部不能取得最大值或最小值,除非它是常数。因此, u u u Ω \Omega Ω 内部的最大值和最小值必须在边界 ∂ Ω \partial \Omega Ω 上取得。

在边界 ∂ Ω \partial \Omega Ω 上, u ( x , y ) = sin ⁡ x u(x,y) = \sin x u(x,y)=sinx。由于 ∂ Ω \partial \Omega Ω 是以原点为中心,半径为 π 2 \frac{\pi}{2} 2π 的圆,边界上的点 ( x , y ) (x,y) (x,y) 满足 x 2 + y 2 = π 2 4 x^2 + y^2 = \frac{\pi^2}{4} x2+y2=4π2,因此 x x x 的取值范围是 − π 2 ≤ x ≤ π 2 -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} 2πx2π。在这个范围内, sin ⁡ x \sin x sinx 的最大值是 1 1 1(当 x = π 2 x = \frac{\pi}{2} x=2π 时),最小值是 − 1 -1 1(当 x = − π 2 x = -\frac{\pi}{2} x=2π 时)。

因此, u u u Q ‾ \overline{Q} Q 上的最大值是 1 1 1,最小值是 − 1 -1 1

  • 16
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值