2018 蓝桥杯省赛 A 组模拟赛 快速幂

题解:点击打开链接

题意:一个数的整数次幂,是我们在计算中经常用到的,但是怎么可以在 

\mathcal{O}(\log (n))O(log(n)) 的时间内算出结果呢?

代码框中的代码是一种实现,请分析并填写缺失的代码,求 x^y \mod pxymodp的结果。

题解:首先需要明白快速幂的思想。不懂得小伙伴看一下我的这篇博客:https://blog.csdn.net/pk__pk/article/details/78954671讲的矩阵快速幂。也讲了快速幂。

明白了快速幂的思想之后我们再来看我们需要补全的代码。

主函数是输入输出没什么用。pass。

然后看一下pw函数。我们发现他有三个参数,x,y,p。代表x的p次方取余p。返回值为int形。

再看第一个if语句表示若y==0 返回1.我们可以想一想。为什么会出现这句话。很容易想到a的0次方是1。也就是快速幂的结束条件。我们就不难想到。这是一个用递归的方法实现的快速幂。

然后再看第二个if语句。表示若y为奇数。res乘上x。

然后返回res的值。很明显res是pw函数的值。

在回忆一下快速幂的步骤。

若y为偶数

1.x *= x;

2.y /= 2;

若y为奇数

1. res *= 2;

2 x *= x

3 y /= 2

我们会发先少了偶数的部分。

那么很自然的就能推出结果为 res = pw(x*x,y/2,p);

#include <iostream>
using namespace std;

int pw(int x, int y, int p) {
    if (!y) {
        return 1;
    }
    int res = pw(x*x,y/2,p);
    if (y & 1) {
        res = res * x % p;
    }
    return res;
}

int main() {
    int x, y, p;
    cin >> x >> y >> p;
    cout << pw(x, y, p) << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值