题目链接:http://poj.org/problem?id=2318
题意:给你一个矩形,再给你一些边,这些边把矩形分成了一些区域,然后再给你一些点,问各个区域的点的个数。
题解:这道题,需要用到向量的叉积这个知识点。
先普及一下关于向量的知识
向量:在数学中既有大小又有方向的量成为向量(或矢量)。
向量加减法:向量P(x1,y1) ,向量(x2,y2)
向量P + 向量Q = (x1+x2,y1+y2);
向量P - 向量Q = (x1 - x2,y1 - y2);
向量点积 :
向量P·向量Q = x1 * x2 + y1 * y2
向量叉积 :
向量P × 向量Q = x1*y2 - x2*y1
叉积性质:判断两个向量之间的顺逆关系 以下设 向量P×向量Q 的结果为 ans
若ans > 0 则向量P在Q的顺时针方向
若ans < 0 则向量P在Q的逆时针方向
若ans == 0 则向量 P 与 向量Q 共线,但是可能同向也可能反向。
所以这道题,我们可以用叉积的性质来解决,把每一条分割线看作一个向量,选择一条边,然后给这些向量按x排序,然后让给出点的起点和分割线的起点相同,给出点的终点为该点,然后利用叉积来判断即可。
具体看代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 5005;
struct point{
double x;
double y;
};
struct v{ // 向量
point start; // 起始点的坐标
point end; // 终点的坐标
}lim[maxn];
int book[maxn];
double crossProduct(v* v1,v* v2){ //计算两个 向量的 叉积
v vt1,vt2; // 定义两个向量
double result = 0; // 存叉积
vt1.start.x = 0; // 把向量 v1 转成起点从(0,0)开始
vt1.start.y = 0;
vt1.end.x = v1->end.x - v1->start.x;
vt1.end.y = v1->end.y - v1->start.y;
vt2.start.x = 0; // 把向量 v2 转成起点从(0,0)开始
vt2.start.y = 0;
vt2.end.x = v2->end.x - v2->start.x;
vt2.end.y = v2->end.y - v2->start.y;
result = vt1.end.x * vt2.end.y - vt2.end.x * vt1.end.y; // 计算叉积
return result;
}
bool cmp(v x,v y){ // 对向量按照x排序
return x.start.x < y.start.x;
}
int main(){
int n,m,x1,x2,y1,y2;
while(~scanf("%d",&n)){
memset(book,0,sizeof(book));
if(n == 0 ) break;
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
for(int i = 0 ; i < n ; i ++){
double x,y;
scanf("%lf%lf",&x,&y);
lim[i].start.x = x; // 建立向量
lim[i].start.y = y1;
lim[i].end.x = y;
lim[i].end.y = y2;
}
lim[n].start.x = x2; // 加上最后一个区域
lim[n].start.y = y1;
lim[n].end.x = x2;
lim[n].end.y = 0;
sort(lim,lim+n+1,cmp);
for(int i = 0 ; i < m; i ++){
double x,y;
scanf("%lf%lf",&x,&y);
for(int j = 0 ; j <= n ; j ++){
v temp;
temp.start = lim[j].start;
temp.end.x = x;
temp.end.y = y;
double ans = crossProduct(&temp,&lim[j]);
if(ans >= 0){ //根据叉积定义来统计
book[j] ++;
break;
}
}
}
for(int i = 0 ; i <= n ; i ++){
printf("%d: %d\n",i,book[i]);
}
printf("\n");
}
return 0;
}