ASPP 代码解析 pytorch

1.结构图

如图所示,ASPP 本质上由一个1×1的卷积(最左侧绿色) + 池化金字塔(中间三个蓝色) + ASPP Pooling(最右侧三层)组成。而池化金字塔各层的膨胀因子可自定义,从而实现自由的多尺度特征提取

2.代码讲解

ASPP 是一种用于图像语义分割的技术,通过在不同的空洞率下进行卷积操作,从而捕捉不同尺度的上下文信息。

ASPPConv

class ASPPConv(nn.Sequential):
    def __init__(self, in_channels, out_channels, dilation):
        modules = [
            nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        ]
        super(ASPPConv, self).__init__(*modules)

这段代码是一个 ASPPConv 类,继承自 nn.Sequential,用于实现 Atrous Spatial Pyramid Pooling (ASPP) 中的卷积操作。该类的输入参数包括

in_channels : 输入通道数

out_channels : 输出通道数

dilation : 空洞率

主要内容在modules中,包含一个卷积层、一个批归一化层和一个ReLU激活函数

其中super(ASPPConv, self).__init__(*modules)是一个 Python 中的类的构造函数,ASPPConv 是类名,*modules 表示接受任意数量的参数并将它们作为元组传递给函数。super() 函数返回一个临时对象,该对象继承了父类的方法。在这里,super(ASPPConv, self) 表示调用 ASPPConv 的父类的构造函数,并将 self 作为参数传递给它。

简单来说,调用ASPPConv时往里填输入通道数,输出通道数和空洞率三个数据就行

示例,A = ASPPConv(in_channels =224,out_channels=224,dilation=6)

ASPPPooling

class ASPPPooling(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        super(ASPPPooling, self).__init__(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU())
 
    def forward(self, x):
        size = x.shape[-2:]
        x = super(ASPPPooling, self).forward(x)
        return F.interpolate(x, size=size, mode='bilinear', align_corners=False)

这是一个定义了ASPP模块中的池化层的类,该类接受两个参数:

in_channels :输 入通道数

out_channels :输出通道数

具体来说,包含了一个自适应平均池化层、一个 1x1 卷积层、一个批归一化层和一个 ReLU 激活函数层。

自适应平均池化层的作用是将输入的特征图进行平均池化,输出一个大小为 1x1 的特征图。

1x1 卷积层的作用是对输入的特征图进行卷积操作,输出一个新的特征图。

批归一化层的作用是对卷积输出的特征图进行归一化处理,加速模型训练。

ReLU 激活函数层则是对特征图进行非线性变换,增强模型的表达能力。

在前向传播过程中

“size = x.shape[-2:]”表示获取一个张量 x 的最后两个维度的大小,也就是 x 的高度和宽度

“x = super(ASPPPooling, self).forward(x)”表示调用父类 ASPPPooling 的 forward 方法,并将参数 x 传递给该方法进行处理

“F.interpolate(x, size=size, mode='bilinear', align_corners=False)”表示对池化后的x进行双线性插值将特征图的大小还原回原始大小

总的来说,在ASPPPooling中,先是池化富集信息,再通过插值恢复图像尺度

ASPP

class ASPP(nn.Module):
    def __init__(self, in_channels, atrous_rates):
        super(ASPP, self).__init__()
        out_channels = 256
        modules = []
        modules.append(nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()))
 
        rate1, rate2, rate3 = tuple(atrous_rates)
        modules.append(ASPPConv(in_channels, out_channels, rate1))
        modules.append(ASPPConv(in_channels, out_channels, rate2))
        modules.append(ASPPConv(in_channels, out_channels, rate3))
        modules.append(ASPPPooling(in_channels, out_channels))
 
        self.convs = nn.ModuleList(modules)
 
        self.project = nn.Sequential(
            nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Dropout(0.5))
 
    def forward(self, x):
        res = []
        for conv in self.convs:
            res.append(conv(x))
        res = torch.cat(res, dim=1)
        return self.project(res)

这是一个定义了模块ASPP的类,该类接受两个参数:

in_channels : 输入通道数

dilation : 空洞率

 out_channels输出通道数的值在给的代码中被钉死。

ASPP模块包含一个1x1卷积层和四个不同空洞率的卷积层以及一个池化层。这些层的输出在通道维度上拼接起来,然后通过一个1x1卷积层进行融合,最终输出特征图。 

modules = []
        modules.append(nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()))
这一段表示定义了一个数组modules,并往里面塞了一个1*1卷积,一个批归一化和一个ReLU函数,对应结构图中的1*1卷积

rate1, rate2, rate3 = tuple(atrous_rates)
        modules.append(ASPPConv(in_channels, out_channels, rate1))
        modules.append(ASPPConv(in_channels, out_channels, rate2))
        modules.append(ASPPConv(in_channels, out_channels, rate3))
        modules.append(ASPPPooling(in_channels, out_channels))
 
这段代码表示往modules中加入四个值,分别是rate1,rate2,rate3空洞率下的空洞卷积,以及池化后的图像。

        self.convs = nn.ModuleList(modules)

nn.ModuleList 是一个容器,可以将多个 nn.Module 对象组合在一起,方便进行参数管理和优化器更新等操作。

在这个代码片段中,self.convs 是一个 nn.ModuleList 对象,它包含了若干个 nn.Module 对象,这些 nn.Module 对象可能是卷积层、池化层、全连接层等等。这个 nn.ModuleList 对象可以被用于搭建神经网络模型。

 self.project = nn.Sequential(
            nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Dropout(0.5))

这段代码是一个卷积神经网络的一部分,其中包含了一个卷积层、一个批量归一化层、一个ReLU激活函数和一个Dropout层。这个网络的输入是一个5倍于输出通道数的张量,经过卷积层后输出通道数为out_channels。

主要作用是对ASPP五个尺度融合后的通道数调整

在前向传播过程中

 def forward(self, x):
        res = []
        for conv in self.convs:
            res.append(conv(x))
        res = torch.cat(res, dim=1)
        return self.project(res)

定义一个数组res,继承self.convs中的值,就是将ASPP中的五个尺度进行concatenate融合,之后再进行1*1卷积通道调整。

完整代码

from torch import nn
import torch
import torch.nn.functional as F
 
class ASPPConv(nn.Sequential):
    def __init__(self, in_channels, out_channels, dilation):
        modules = [
            nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        ]
        super(ASPPConv, self).__init__(*modules)
 
class ASPPPooling(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        super(ASPPPooling, self).__init__(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU())
 
    def forward(self, x):
        size = x.shape[-2:]
        x = super(ASPPPooling, self).forward(x)
        return F.interpolate(x, size=size, mode='bilinear', align_corners=False)
 
class ASPP(nn.Module):
    def __init__(self, in_channels, atrous_rates):
        super(ASPP, self).__init__()
        out_channels = 256
        modules = []
        modules.append(nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()))
 
        rate1, rate2, rate3 = tuple(atrous_rates)
        modules.append(ASPPConv(in_channels, out_channels, rate1))
        modules.append(ASPPConv(in_channels, out_channels, rate2))
        modules.append(ASPPConv(in_channels, out_channels, rate3))
        modules.append(ASPPPooling(in_channels, out_channels))
 
        self.convs = nn.ModuleList(modules)
 
        self.project = nn.Sequential(
            nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Dropout(0.5))
 
    def forward(self, x):
        res = []
        for conv in self.convs:
            res.append(conv(x))
        res = torch.cat(res, dim=1)
        return self.project(res)
 
aspp = ASPP(256,[6,12,18])
x = torch.rand(2,256,13,13)
print(aspp(x).shape)

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: PyTorch Deeplabv3是一个基于PyTorch深度学习框架的语义分割模型,它采用了深度卷积神经网络来实现高效的图像分割。该模型的代码解析主要包括以下几个方面: 1. 数据预处理:PyTorch Deeplabv3采用了数据增强的方式来提高模型的鲁棒性和泛化能力,包括随机裁剪、随机翻转、随机旋转等操作。 2. 网络结构:PyTorch Deeplabv3采用了深度卷积神经网络结构,包括ResNet、ASPP等模块,其中ASPP模块是一种多尺度空间金字塔池化模块,可以有效地提取图像的多尺度特征。 3. 损失函数:PyTorch Deeplabv3采用了交叉熵损失函数来计算模型的损失值,同时还采用了Dice系数等指标来评估模型的性能。 4. 训 ### 回答2: DeepLabv3是一种用于语义分割的深度神经网络框架,可以对图像中的每个像素点进行分类,从而实现语义分割效果。PyTorch Deeplabv3代码解析就是对该框架实现的具体细节进行剖析,让开发者更加深入地了解框架的工作原理和实现方式。 PyTorch Deeplabv3代码解析主要包括以下几个方面: 1.深度神经网络的结构:PyTorch Deeplabv3框架采用了DeepLabv3+网络结构,它包括Encoder部分和Decoder部分,Encoder部分采用Resnet101,Decoder部分采用ASPP模块。可以了解到如何从网络结构方面来提高语义分割准确度。 2.数据加载与预处理:PyTorch Deeplabv3代码解析还涉及到数据加载与预处理,对于深度学习训练来说,数据的准备非常重要。在代码解析中可以学习到如何进行数据的划分、批量加载、数据增强和预处理等操作。 3.损失函数的设计:对于语义分割来说,损失函数设计非常重要,决定了训练过程中误差的计算方式。PyTorch Deeplabv3代码解析中会涉及到网络训练过程中使用Cross-entropy损失函数和Multi-scale损失等。 4.训练与测试过程:最后,PyTorch Deeplabv3代码解析还会汇总整个网络模型的训练和测试过程,从数据预处理开始一直到预测结果的可视化,详细阐述动态追踪神经节点、优化器的使用、训练和测试时的学习率设定等细节。 通过对PyTorch Deeplabv3代码进行深入解析,可以更加深入地理解网络模型的实现原理,提高卷积神经网络算法效率,实现更加准确的语义分割。 ### 回答3: PyTorch是一个基于Python的科学计算库,它广泛应用于深度学习领域。Pytorch DeeplabV3是一种基于深度学习的语义分割方法,将传统的池化、卷积等操作替换为空间金字塔池化(ASPP)模块,提高了分割的精度,其代码解析如下: 1. 预处理 首先,需要将输入的图像进行预处理,包括归一化和裁剪。在PyTorch Deeplabv3中,使用的预处理方式是将图像的每个像素值归一化到0到1的范围内: ```python img = (img - img.min()) / (img.max() - img.min()) ``` 然后,从中心进行裁剪,得到输入的尺寸。这里需要注意的是,输入网络的图像必须具有相同的大小,因此必须对图像进行裁剪。一般情况下,裁剪的图像大小与训练时使用的大小相同,例如: ```python crop_size = (513, 513) img = img[:, :crop_size[0], :crop_size[1]] ``` 2. 初始化模型 在PyTorch Deeplabv3中,deeplabv3模型由基础模型和ASPP模块组成。基础模型可以使用各种深度学习模型,例如ResNet,VGG等,这里以ResNet为例进行解释。初始化模型的代码如下: ```python model = DeepLabV3Plus(backbone='resnet', output_stride=16) ``` 其中backbone代表基础模型,output_stride代表输出图像的分辨率。在这个例子中,输出图像的分辨率为图像的1/16。输出通道的数量等于分类的数量,加上1表示背景。 3. 输出 模型训练完成后,使用下面的代码将结果输出为图像。这里需要注意的是,softmax操作被执行到输出上,将估计值转换为概率图。 ```python with torch.no_grad(): output = model(input_img)['out'] final_output = F.softmax(output, dim=1).squeeze(0)[1, :, :] ``` 最后,将分割结果进行后处理,包括填充和重调色。这个部分的代码可以根据具体的需求进行实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值