残差网络(ResNet)

假设第 l+1 层,我们想要的映射为 H(x),但此时我们不选择直接优化 H(x),而是构造F(x_{l}),选择间接去优化F(x_{l}),其中F(x_{l})表达式为:

F(x_{l})=H(x)-x_{l}

最后在网络第 l+1 输入前,将 F(x_{l}) 加上 x_{l} 即可得到 H(x),也就是原来想要的输出,也是第 l+1层的输入,其表达式为:

x_{l+1}=x_{l}+F(x_{l})

式子中的F(x_{l}),被称为两层网络之间的残差 

那么为什么残差网络可以解决网络退化的问题?

现在,假设任意更深层的输入为 x_{L} ,任意浅层的输入为 x_{l} ,那么根据上述的规律,可以写出二者之间的递推关系式:

x_{L}=x_{l}+\sum_{i=l}^{L-1}F(x_{i})

也就是说任意深层的输入,可以写成任意浅层的输入加上两层网络之间的残差和

那么,与普通的神经网络相比,在前向传播的过程中,残差网络的跳跃结构使得任意浅层的信息更容易传播到深层

同时损失函数关于深层的梯度也可以直接传播到任意浅层,说明在反向误差传递的过程里,也不会出现梯度消失的问题

残差网络这样的属性,使其无论是前向传播,还是反向传播,都可以将信号传播到任意一层,所以可以解决网络退化的问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PL_涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值