残差网络(ResNet)

假设第 l+1 层,我们想要的映射为 H(x),但此时我们不选择直接优化 H(x),而是构造F(x_{l}),选择间接去优化F(x_{l}),其中F(x_{l})表达式为:

F(x_{l})=H(x)-x_{l}

最后在网络第 l+1 输入前,将 F(x_{l}) 加上 x_{l} 即可得到 H(x),也就是原来想要的输出,也是第 l+1层的输入,其表达式为:

x_{l+1}=x_{l}+F(x_{l})

式子中的F(x_{l}),被称为两层网络之间的残差 

那么为什么残差网络可以解决网络退化的问题?

现在,假设任意更深层的输入为 x_{L} ,任意浅层的输入为 x_{l} ,那么根据上述的规律,可以写出二者之间的递推关系式:

x_{L}=x_{l}+\sum_{i=l}^{L-1}F(x_{i})

也就是说任意深层的输入,可以写成任意浅层的输入加上两层网络之间的残差和

那么,与普通的神经网络相比,在前向传播的过程中,残差网络的跳跃结构使得任意浅层的信息更容易传播到深层

同时损失函数关于深层的梯度也可以直接传播到任意浅层,说明在反向误差传递的过程里,也不会出现梯度消失的问题

残差网络这样的属性,使其无论是前向传播,还是反向传播,都可以将信号传播到任意一层,所以可以解决网络退化的问题

### 关于残差网络 ResNet 中特征融合的方法和技术实现 #### 残差块的作用机制 在 ResNet 架构中,残差块通过引入跳跃连接来促进信息流动。对于基本残差块而言,在较浅的网络(如 ResNet-18 和 ResNet-34)中应用;而瓶颈残差块则适用于更深的网络(如 ResNet-50、ResNet-101 和 ResNet-152),其中利用 1×1 卷积进行维度变换以优化计算效率和模型性能[^1]。 #### 特征融合的具体方式 残差网络中的特征融合主要体现在两个方面: - **跨层连接**:这是最显著的特点之一。每一组卷积运算后的输出不仅会传递给下一个单元继续处理,还会直接加回到后续更深层次的结果上形成最终输出。这种方式有效地解决了梯度消失问题并增强了不同层次间的信息交流。 - **多尺度表示**:随着网络不断加深,感受野逐渐扩大,从而捕捉到更大范围内的上下文关系。与此同时,早期阶段保留下来的低级细节同样重要,因为这些局部特性有助于提高定位精度以及对细粒度模式的理解。因此,整个过程中既包含了全局语义又兼顾到了局部纹理等多方面的表征学习[^2]。 #### 实现代码示例 下面给出一段基于 PyTorch 的简单实现,展示了如何定义一个标准的残差块来进行特征融合: ```python import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() # Convolutional layers with batch normalization and ReLU activation function self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels * self.expansion) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity # Feature fusion via skip connection out = self.relu(out) return out ``` 此段代码实现了基础版本的残差块 `BasicBlock` ,其中包括两次三维卷积操作及其对应的批标准化(`BatchNorm`)与激活函数(`ReLU`)的应用。特别值得注意的是最后一行 `out += identity` 这一步骤正是完成了来自输入端未经修改的数据流与经过一系列转换后的新特征之间的线性叠加——即所谓的“跳过链接”,这便是 ResNet 执行特征融合的核心所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PL_涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值