数学基础备查备忘
条件概率:
P
[
x
∣
y
]
=
P
(
x
y
)
P
(
y
)
P[x|y]=\frac{P(xy)}{P(y)}
P[x∣y]=P(y)P(xy)
联合概率和条件概率
P
[
x
y
]
=
P
[
x
∣
y
]
P
[
y
]
=
P
[
y
∣
x
]
P
[
x
]
P[xy]=P[x|y]P[y]=P[y|x]P[x]
P[xy]=P[x∣y]P[y]=P[y∣x]P[x]
贝叶斯定理
P
[
x
∣
y
]
=
P
(
x
)
P
[
y
∣
x
]
P
(
y
)
P[x|y]=\frac{P(x)P[y|x]}{P(y)}
P[x∣y]=P(y)P(x)P[y∣x]
独立的变量定义
∀
x
∈
X
,
y
∈
Y
,
P
(
x
y
)
=
P
(
x
)
P
(
y
)
,
P
(
x
)
=
P
[
x
∣
y
]
\forall x\in X,y\in Y,P(xy)=P(x)P(y),P(x)=P[x|y]
∀x∈X,y∈Y,P(xy)=P(x)P(y),P(x)=P[x∣y]
先验概率:
P
(
x
)
P(x)
P(x)
后验概率:
P
[
x
∣
y
]
P[x|y]
P[x∣y]
完善保密性
定义
∀
x
∈
P
,
y
∈
C
,
有
P
[
x
∣
y
]
=
P
(
x
)
\forall x\in P,y\in C,有P[x|y]=P(x)
∀x∈P,y∈C,有P[x∣y]=P(x)
也就是说给定密文,明文的后验等于先验概率.
含义:
- x和y有统计独立关系.
- 明密文互信息=0
- 无法根据分析y推导出x,也就是说具有该性质的密文不应该透露任何明文的信息.
验证方法
- 对于每个明文计算 P [ X = x ] P[X=x] P[X=x],也就是对每个明文计算其使用概率.
- 计算 P [ x ∣ y ] P[x|y] P[x∣y],也就是确定该密文的条件下确认明文为x的概率,共计算xy条.(由于攻击时是用密文推导明文,所以密文是条件,明文是结果.)
- 如果两者相等(对于一个明文x而言)则证明有完善保密性.
- P [ x ∣ y ] P[x|y] P[x∣y]的计算方法:贝叶斯公式 P [ x ∣ y ] = P ( x ) P [ y ∣ x ] P ( y ) P[x|y]=\frac{P(x)P[y|x]}{P(y)} P[x∣y]=P(y)P(x)P[y∣x]
P
(
y
)
P(y)
P(y)的计算:
也就是说是所有可能翻译至密文y的密钥概率乘以使用该密钥时导致密文为y的明文被选中的概率的加和.
P
[
y
∣
x
]
P[y|x]
P[y∣x]的计算
也就是选择任一个可以从明文x转换为密文y的密钥的概率.
最后计算 P [ x ∣ y ] P[x|y] P[x∣y]和 P ( x ) P(x) P(x)的关系.
Example
Extension
- 完善保密性的条件等价于 P [ x ∣ y ] = P ( y ) P[x|y]=P(y) P[x∣y]=P(y).
- 要保持完善保密性,应做到密钥空间大于密文空间大于明文空间.