地磁场仿真与导航方案设计
地磁场作为地球的固有资源,为航空、航天、航海提供了天然的坐标,可应用于航天器、航空飞行器和舰船等载体的定位、定向及姿态控制。本文依据地磁场的球谐模型,利用Matlab工具,设计了计算任意地点地磁场的程序,对仿真结果与实际数据进行对比分析;并选定一组卫星的数据,结合卫星的运动轨道,描绘90分钟内卫星处地磁总强度/矢量随轨道变化曲线,据此设计一种卫星地磁导航方案。
一、地磁场计算原理
1.1.球谐模型与球谐系数
地磁学的基本问题之一就是用数学表达式将地磁要素的地面分布表示成地理坐标的函数。1839 年 Gauss 提出了地磁场的球谐分析方法,1885 年 Schmidt 又发展了这一方法,形成了地磁学的高斯理论。国际地磁场随之建立起来,从而就有了全球统一的地磁场数学模型—球谐模型。
使用球谐模型计算地磁场,球谐系数必不可少。球谐系数是一个随时间变化的量。由于地球主磁场的源——高温液态铁镍环流处于不断的运动过程中,因此不同年份有不同的球谐系数。国际地磁和高空物理协会(IAGA)每隔五年提供一组球谐系数数据,计算特定年份特定时间的球谐系数,依据以下公式:
式中, g n m ( y e a r ) g_n^m (year) gnm(year)和 h n m ( y e a r ) h_n^m (year) hnm(year)是year年的球谐系数(nT), S v g n m Sv_{g_n^m } Svgnm和 S v h n m Sv_{h_n^m } Svhnm是球谐系数的年变率(nT/年), g n m g_n^m gnm和 h n m h_n^m hnm是t年的球谐系数(nT)。
把所求年份t、对照年份year及该年份的球谐系数和年变率数据代入上式,就能得到任意年份的球谐系数。
1.2.地理坐标转地心坐标
由于IGRF的球谐系数是在半径为6371.2km的参考球中推导出来的,实际上,地球并非是理想的球体,而是椭球体。为了提高地磁计算的精度,需要考虑地球的扁率。假设地球某一测点的大地坐标为(ϕ,λ,h),其中ϕ为大地(地理)纬度、λ为经度、h为 海拔高度;则该点的地心坐标为(φ,λ,r),其中φ为地心纬度、λ为地心经度、r为测点离开地心的距离。则大地坐标和地心球坐标有如下关系:
上式中,a为地球长半轴(6378.137km),b 为地球短半轴(6356.7523km)。
1.3.勒让德函数及其一阶导数求解
以矩阵 P ( n , m ) ( c o s θ ) P_(n,m) (cosθ) P(n,m)(cosθ)表示勒让德函数, d P n , m ( c o s θ ) d θ \frac {dP_{n,m}(cosθ)} {dθ} dθdPn,m(cosθ)表示其一阶导数(( c o s θ cosθ cosθ)说明该函数以地心余纬θ的余弦值为自变量, θ = 90 ° − φ θ=90°-φ θ=90°−φ),则
1.4.计算地磁场分量
使用球谐系数,并借助于高斯级数表达式,就可以计算出地心球坐标系下的地磁三分量 X ,Y 和Z 。IGRF三分量 X ,Y 和Z 的高斯级数表达式:
式中,R为地球半径(6371.2km),r 为地心到计算点的径向距离(km),θ为地心余纬(即θ=90°-φ),φ为地心纬度,λ为地心或地理经度, P n m c o s ( θ ) P_n^m cos(θ) Pnmcos(θ)为Schmidt-Legendre函数, g n m g_n^m gnm和 h n m h_n^m hnm为球谐系数(nT)。
1.5.地心坐标转地理(大地)坐标
为了描述地磁向量场的空间分布特征,经常将地磁场F 在北━东━地地理坐标系中表示为7个地磁要素(F,H,X_大地,Y_大地,Z_大地,D,I)。下图给出了地理坐标系中各要素的定义和符号,其中XOY面为水平面,OZ为向下的铅锤方向,HOZ为当地磁子午面,XOZ为当地地理子午面,F为地磁场总强度,H为地磁场水平强度,X_大地为地磁场北向分量,Y_大地为地磁场东向分量,Z_大地为地磁场垂直分量,D为磁偏角,I为磁倾角。
地理坐标系中地磁各要素示意图
地心坐标系中的地磁分量转换为大地坐标系中的地磁分量:
X 大 地 = X c o s σ + Z s i n σ X_{大地}=Xcosσ+Zsinσ X大地=Xcosσ+Zsinσ
Y 大 地 = Y Y_{大地}=Y Y大地=Y
Z 大 地 = − X s i n σ + Z c o s σ Z_{大地}=-Xsinσ+Zcosσ Z大地=−Xsinσ+Zcosσ
1.6.卫星处地磁场矢量的描述
为了更方便地描述卫星处地磁总强度/矢量的变化,画出地磁随卫星轨道的三维矢量分布,需把地磁场从大地坐标系向地心地固坐标系做进一步转化。
可以借助之前的实验结果得到卫星在地心地固坐标系中的位置,记作 ( X D , Y D , Z D ) (X_D,Y_D,Z_D ) (X