【Windows】怎么查看CUDA版本?Conda命令安装和NVIDIA官网安装包安装的CUDA有何区别?nvcc -V和nvidia-smi获得的CUDA版本有何区别?如何指定CUDA版本?

一、如何查看CUDA版本?

1.1 查看runtime版本的CUDA

(1)nvcc -V或nvcc --version

(2)在CUDA的include文件夹中找到cuda.h文件

打开后搜索version。

上面这张图的cuda路径是我在安装的时候自定义的,不要完全参考。 

(3)查看conda指令安装的CUDA版本

用下面的代码去查看CUDA和cudnn版本。

import torch
print(torch.__version__)

print(torch.version.cuda)
print(torch.backends.cudnn.version())

 下面是我在虚拟环境1和2上运行的结果,有一个结果cuda版本是10.2,和上面第(1)、(2)中查看的cuda版本不一样,说明用conda命令安装的cuda和官方安装包安装的cuda不一样(具体原因详见本文第三部分)。

1.2 查看driver版本的CUDA

(1)nvidia-smi

在cmd命令窗口中执行nvidia-smi,显示的CUDA-Version其实是CUDA驱动的版本(CUDA driver)。

 (2)NVIDIA控制面板

在NVIDIA控制面板——系统信息——组件信息中看到的CUDA版本,其实也是驱动版本。

二、两种不同的CUDA(驱动版和运行库版)

在cmd命令窗口中执行nvidia-smi,显示的CUDA-Version其实是CUDA驱动的版本(CUDA driver)。

在NVIDIA控制面板——系统信息——组件信息中看到的CUDA版本,其实也是驱动版本。

而执行nvcc -V命令显示的CUDA版本,是CUDA运行库(CUDA runtime)的版本。

想要正常利用GPU运行TensorFlow、PyTorch、Keras环境, 两种CUDA都要正确安装,版本需要符合兼容要求。

一般来说,驱动版本越新越好;而运行库版本,如果需要根据开源项目进行开发,则需要参考对方指定的CUDA版本,一般来说不要太高;但是注意一点,30系的显卡只能运行CUDA11以上版本。

三、Conda指令和NVIDIA安装包有何区别?

想要安装CUDA RUNTIME,有两种方式:1、在英伟达官网下载CUDA Toolkit Installer,借此安装;2、在Anaconda环境中使用类似【conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch】的包括cudatoolkit的命令安装。

第一种方式安装的cuda,包括的模块更全面。

第二种方式安装的cuda,用来训练模型,基本够用,但是要用到扩展功能就不行了。

详见:Pytorch 使用不同版本的 cuda - yhjoker - 博客园

  通过 Anaconda 安装的应用程序包位于安装目录下的 /pkg 文件夹中,如笔者的目录即为 /home/xxx/anaconda3/pkgs/ ,用户可以在其中查看 conda 安装的 cudatoolkit 的内容,如下图所示。可以看到 conda 安装的 cudatoolkit 中主要包含的是支持已经编译好的 CUDA 程序运行的相关的动态链接库。( Ubuntu 环境下 )

  在大多数情况下,上述 cudatoolkit 是可以满足 Pytorch 等框架的使用需求的。但对于一些特殊需求,如需要为 Pytorch 框架添加 CUDA 相关的拓展时( Custom C++ and CUDA Extensions ),需要对编写的 CUDA 相关的程序进行编译等操作,则需安装完整的 Nvidia 官方提供的 CUDA Toolkit。

四、如何查看cudnn的版本

4.1 利用torch包的命令

详见本文第一部分的第(3)部分。

4.2 利用cudnn的头文件记录的信息

在cuda安装文件夹的include目录下找到cudnn_version.h文件。

 随便用一个文本浏览器打开后,可以看出我的机器上用英伟达官方安装包安装的cudnn版本是8.0.4。

4.3 conda的cudatoolkit指令捆绑了cudnn

参考:如何用正确姿势安装 PyTorch(With CPU or GPU-CUDA-cuDNN) | 一只因特马

我也不知道为啥这么多教程都在建议单独安装cudnn,从上面的4.1、4.2可以看出,我用conda指令安装的cudnn和用NVIDIA官网下载的cudnn库安装的,版本有所不同,所以它们是不同来源的cudnn。

因此结论明确:利用类似【conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch】指令安装的CUDA,本身就已经捆绑了cudnn,不需单独安装了。

五、如何为环境指定特定版本CUDA呢?

同一机器上有多个CUDA Runtime,如何为环境指定特定版本CUDA呢?

下面分两种情况讨论。

情况一:虚拟环境中已配置CUDA

假如你的虚拟环境中用Conda指令安装过CUDA,那么你在这个环境中训练模型时就默认用这个CUDA引擎。

这时候,如果你想要用另一个版本的CUDA,再用conda指令卸载重装CUDA toolkit即可;而如果你想要用自己当时用NVIDIA官网提供的安装包对应的CUDA,就卸载CUDA toolkit,即可。

情况二:虚拟环境中未配置CUDA

虚拟环境中未配置CUDA,但是机器曾经安装过两个CUDA版本(比如CUDA10和CUDA11)。

那么你需要更改一下系统变量CUDA_PATH和PATH变量中不同版本CUDA的优先级。

由于本人机器没有安装两种CUDA,没法演示,实在抱歉。

<think>嗯,用户问的是电脑上是否可以安装不同版本CUDA。首先,我需要确定CUDA是什么,以及它的版本管理机制。CUDANVIDIA的并行计算平台编程模型,用于加速计算任务。通常,不同的深度学习框架可能需要不同版本CUDA支持,所以用户可能在使用多个项目时遇到版本冲突的问题。 接下来,我需要回忆CUDA安装方式。CUDA Toolkit通常安装在系统的特定路径下,比如/usr/local/cuda-x.x,其中x.x是版本号。每个版本有自己的目录,这意味着理论上可以同时安装多个版本。用户可以通过切换符号链接或环境变量来选择使用哪个版本。 然后,要考虑兼容性问题。不同版本CUDA可能需要特定版本NVIDIA驱动。例如,CUDA 11.x可能需要驱动版本450以上,而CUDA 10.x可能需要较低的驱动版本。如果驱动版本不够新,可能无法支持最新的CUDA版本,这可能导致安装多个CUDA时出现兼容性问题。 另外,运行时库的管理也很重要。当用户运行程序时,系统会根据LD_LIBRARY_PATH或指定的路径加载对应的CUDA库。如果多个版本存在,需要确保程序链接到正确的版本,否则可能会出现错误。 用户可能想知道具体的安装步骤。例如,下载不同版本CUDA Toolkit,安装到不同目录,然后通过修改环境变量来切换版本。比如,在.bashrc中设置PATHLD_LIBRARY_PATH指向所需版本CUDA路径。 还需要提到工具包之间的兼容性,比如cuDNN,它通常需要与CUDA版本对应。用户可能需要为每个CUDA版本安装相应的cuDNN版本,这增加了管理的复杂性。 可能的问题包括:如检查已安装CUDA版本,如设置默认版本,如处理驱动兼容性,以及如处理多个项目依赖不同CUDA版本的情况。用户可能在使用conda等环境管理工具时,可以通过创建虚拟环境来管理不同的CUDA依赖,比如使用conda安装特定版本CUDA工具包,这样可以在不同环境中使用不同版本,避免系统级冲突。 另外,需要注意,虽然可以安装多个CUDA版本,但NVIDIA驱动通常只能有一个版本,且需要支持所有已安装CUDA版本。如果驱动版本过低,可能需要升级,但升级驱动有时会导致旧版本CUDA无法正常工作,因此需要谨慎处理。 总结下来,回答的结构应该是先确认可以安装多个版本,然后说明安装方法,环境变量配置,兼容性注意事项,以及可能的解决方案如虚拟环境。同时,提醒用户注意驱动版本库的兼容性问题,确保他们了解潜在的问题解决方法。</think>可以,在电脑上安装不同版本CUDA是可行的。以下是关键点及操作指南: --- ### **一、CUDA版本共存原理** 1. **独立安装路径** CUDA Toolkit默认安装到独立目录(如`/usr/local/cuda-11.8`、`/usr/local/cuda-12.2`),不同版本互不覆盖。 2. **动态链接库管理** 通过环境变量控制程序运行时加载的CUDA版本--- ### **二、安装步骤** 1. **下载所需版本** 从[NVIDIA CUDA Archive](https://developer.nvidia.com/cuda-toolkit-archive)下载不同版本CUDA安装包。 2. **安装到不同路径** 安装时选择自定义路径(如`cuda-11.8`、`cuda-12.2`),避免覆盖现有版本--- ### **三、切换CUDA版本** 通过修改环境变量指定当前使用的版本: ```bash # 临时生效(替换xx.x为具体版本) export PATH=/usr/local/cuda-xx.x/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-xx.x/lib64:$LD_LIBRARY_PATH # 永久生效(写入~/.bashrc或~/.zshrc) echo 'export PATH=/usr/local/cuda-xx.x/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-xx.x/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` --- ### **四、兼容性注意事项** 1. **NVIDIA驱动版本** - 驱动需支持所有已安装CUDA版本。例如: - CUDA 12.x要求驱动≥525.60 - CUDA 11.x要求驱动≥450.80 - 通过`nvidia-smi`查看驱动版本。 2. **cuDNN与工具链匹配** 深度学习框架(如PyTorch、TensorFlow)依赖特定CUDA+cuDNN组合,需对齐版本--- ### **五、虚拟环境方案(推荐)** 使用`conda`或`docker`隔离CUDA依赖: 1. **Conda环境** ```bash conda create -n cuda11_env cudatoolkit=11.8 conda activate cuda11_env ``` 2. **Docker容器** 根据需求拉取不同CUDA版本的镜像: ```bash docker pull nvidia/cuda:11.8.0-devel docker pull nvidia/cuda:12.2.0-devel ``` --- ### **六、验证安装** 1. 检查当前CUDA版本: ```bash nvcc --version ``` 2. 查看GPU驱动兼容性: ```bash nvidia-smi ``` --- ### **总结** - **支持多版本共存**:通过路径隔离环境变量控制实现。 - **核心限制**:NVIDIA驱动需满足所有CUDA版本的最低要求。 - **最佳实践**:优先使用虚拟环境(conda/docker)管理依赖,避免系统级冲突。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值