本文整理自/《机器学习在分子动力学中的应用》培训视频
原创/wlj
编辑/paprika
力场的概念,机器学习的作用
我们都知道在很多实际问题中,需要模拟体系的动态过程,而这需要计算体系的能量。但第一性原理计算能量成本过高,无法解决很多有现实价值的大体系问题。在上世纪70年代人们提出力场的概念,以原子的几何排布来近似能量,大幅加快计算能量的速度。一般来说,力场会考虑原子间距离、化学键夹角以及其他更复杂的特征。
经过大约几十年的发展,力场在生物制药领域得到非常广泛的应用。很多国外的大型药企,都在力场的研发上有相当大的投入。但是我们称之为经典力场的这套方法,在很多情况下精度并不令人满意。力场的开发许多时候依赖于经验和实验数据,所以自然会引入一些噪音,这对力场的精度会造成影响。另外材料、化学工程领域,许多问题需要考虑量子力学效应,需要在力场中有体现。
力场的开发本质上是一个拟合的过程。举一个简单例子,对一个只有2个原子的体系,显然最重要的一个参数就是两个原子之间的距离。如果我们能够在某一个给定的范围内,很好地拟合出距离和能量之间的关系,那么就可以认为这是一个考虑周全的优秀力场。显然,对于更复杂的体系