1、提示工程简介
不同Prompt生成的汉堡图片
- 提示(Prompt)包括传递给语言模型的指令和语境,以实现预期的任务。提示工程(Prompt Engineering)是一种策略(技巧),是开发和优化提示的实践,旨在引导人工智能语言模型(例如 ChatGPT)生成满足用户需求的输出。ChatGPT 创始人 Sam Altman 认为提示词工程是用自然语言编程的黑科技,绝对是一个高回报的技能。 很多人也把提示词看做 AIGC 这个时代的源代码
- 提示工程与 ChatGPT 之间是相互依赖的。从技术层面看,Prompt是作为输入信息传递给ChatGPT 的文本,在训练和使用这类生成预训练模型时,Prompt是用来激发模型回应的关键文本。模型会根据输入的Prompt分析上下文信息,并生成与之相关的回应。通常,输入的Prompt 越具体,模型生成的回答就越精确。从使用场景来看,用户通过提供一个Prompt来引导ChatGPT,使其生成有针对性的回答。同时,ChatGPT的回答质量也依赖于Prompt的表达效果。一个好的Prompt能帮助ChatGPT更准确地理解用户意图,控制模型并实现更精确、高质量和相关的文本生成,从而生成更符合用户期望的回答。提示工程之所以重要,是因为通过采用有效的提示方法,用户能够充分发挥模型的潜力,提高效率和输出质量,降低误导风险,扩展应用场景等。
2、提示原则
- 遵循一些提示原则,可以得到更有用和准确的答案:
- 明确清晰:确保Prompt表达清晰明确,避免歧义。提供足够的上下文信息,以便AI更好地理解您的问题。
- 详细程度:根据需要,指定您希望获得的答案的详细程度。这可以帮助AI为您提供合适长度的回答。
- 有针对性:尽量提出具体而有针对性的问题,以便AI能够更准确地为您提供所需信息。
- 分步提问:对于复杂或多部分的问题,分解成多个简单的问题,逐个提问。这样可以更容易地获得满意的答案。
- 限定范围:如果有需要,限定问题的范围,例如特定时间段、地点或领域等。这将有助于AI为您提供更精确的答案。
- 重复与澄清:如果AI没有正确理解您的问题,不要犹豫,尝试用不同的方式重复或澄清问题。
- 灵活适应:适应AI的回答风格和表达方式ÿ