深度学习之预测/导出/显示

预测/导出/显示

https://www.yuque.com/lart/ml-newer

版本号
作者
时间
改动内容
0.1
Lart
2018年10月18日10:16:29
创建文档

预测

核心代码

predict

# 这里是keras,其他框架按实际来
predict(self, x, batch_size=None, verbose=0, steps=None)

为输入样本生成输出预测。

计算逐批次进行。

对于已经训练好的网络而言,获得其已经保存好的最好权重,在相同的架构上载入模型即可使用 predict 来进行预测数据了.要注意路径

# 构建不带分类器的预训练模型
inputshape = (224, 224, 3)
base_model = VGG16(input_shape=inputshape,
                         weights='imagenet',
                         include_top=True)
old_layer = base_model.get_layer('fc2').output
predictions = Dense(4, activation='linear')(old_layer)

# 构建我们需要训练的完整模型
model = Model(inputs=base_model.input, outputs=predictions)
model.load_weights('./model_data/weights_best_vgg16.hdf5', by_name=True)

# 导入数据进行测试
box_path = './test/box/'
img_path = './test/img/'

img_names = os.listdir(img_path)

images = []
inputs = []
for img_name in img_names:
    img = image.load_img(img_path + img_name, target_size=(224, 224))
    img = image.img_to_array(img)
    images.append(imread(img_path + img_name))
    inputs.append(img.copy())

inputs = preprocess_input(np.array(inputs))

# 预测
print('总的输入形状:', inputs.shape)
results = model.predict(inputs, batch_size=1, verbose=1)
print('预测结果形状:', results.shape)

导出

关于导出数据,主要内容是预测的测试集的结果的导出.根据任务不同,可能会有不同的处理手段,这里以类似预目标检测任务的一个输出的导出为例.

注意 这里的导出的格式很关键.因为有些任务对你的运行结果的检测,可能是针对固定的格式而言的.应该仔细查看任务要求.甚至可能会给你的 example 示例文件.这里的核心关键是 看清要求!

例子

下面代码实现了导出到xml文件的一个流程.

from scipy.misc import imread
from xml.etree import ElementTree as ET

results = model.predict(inputs, batch_size=1, verbose=1)
print('预测结果形状:', results.shape)

# 保存结果到xml文件
for i, img_name in enumerate(img_names):
    img_read = imread(img_path + img_name)
    # Parse the outputs.
    det_xmin = results[i][0]
    det_ymin = results[i][1]
    det_xmax = results[i][2]
    det_ymax = results[i][3]

    # 指定根节点/子节点
    prediction = ET.Element("prediction")
    bndbox = ET.SubElement(prediction, "bndbox")
    xmin = ET.SubElement(bndbox, "xmin")
    ymin = ET.SubElement(bndbox, "ymin")
    xmax = ET.SubElement(bndbox, "xmax")
    ymax = ET.SubElement(bndbox, "ymax")
    conf = ET.SubElement(bndbox, "conf")

    if det_xmax > img_read.shape[1]:
        det_xmax = img_read.shape[1] - 1
    if det_ymax > img_read.shape[0]:
        det_ymax = img_read.shape[0] - 1

    xmin.text = str(int(round(det_xmin)))
    ymin.text = str(int(round(det_ymin)))
    xmax.text = str(int(round(det_xmax)))
    ymax.text = str(int(round(det_ymax)))
    conf.text = '1.0000'

    # 保存结构树
    tree = ET.ElementTree(prediction)
    tree.write(box_path + img_name[:-3] + 'xml')

显示

这个涉及到了对于预测结果的一个可视化的问题.具体的代码不是很重要,关键是要明确如何更为直观清楚的表达出你的预测的准确与否.

有时,对于无法明确查看的测试集(没有没有测试标签),直接将预测结果绘制出来,可能会更容易理解和判别.

例子 对于目标检测问题,图像上的框远比终端里的文字清楚的多.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值