预测/导出/显示
版本号
|
作者
|
时间
|
改动内容
|
0.1
|
Lart
|
2018年10月18日10:16:29
|
创建文档
|
预测
核心代码
predict
# 这里是keras,其他框架按实际来
predict(self, x, batch_size=None, verbose=0, steps=None)
为输入样本生成输出预测。
计算逐批次进行。
对于已经训练好的网络而言,获得其已经保存好的最好权重,在相同的架构上载入模型即可使用 predict
来进行预测数据了.要注意路径
# 构建不带分类器的预训练模型
inputshape = (224, 224, 3)
base_model = VGG16(input_shape=inputshape,
weights='imagenet',
include_top=True)
old_layer = base_model.get_layer('fc2').output
predictions = Dense(4, activation='linear')(old_layer)
# 构建我们需要训练的完整模型
model = Model(inputs=base_model.input, outputs=predictions)
model.load_weights('./model_data/weights_best_vgg16.hdf5', by_name=True)
# 导入数据进行测试
box_path = './test/box/'
img_path = './test/img/'
img_names = os.listdir(img_path)
images = []
inputs = []
for img_name in img_names:
img = image.load_img(img_path + img_name, target_size=(224, 224))
img = image.img_to_array(img)
images.append(imread(img_path + img_name))
inputs.append(img.copy())
inputs = preprocess_input(np.array(inputs))
# 预测
print('总的输入形状:', inputs.shape)
results = model.predict(inputs, batch_size=1, verbose=1)
print('预测结果形状:', results.shape)
导出
关于导出数据,主要内容是预测的测试集的结果的导出.根据任务不同,可能会有不同的处理手段,这里以类似预目标检测任务的一个输出的导出为例.
注意 这里的导出的格式很关键.因为有些任务对你的运行结果的检测,可能是针对固定的格式而言的.应该仔细查看任务要求.甚至可能会给你的 example
示例文件.这里的核心关键是 看清要求!
例子
下面代码实现了导出到xml文件的一个流程.
from scipy.misc import imread
from xml.etree import ElementTree as ET
results = model.predict(inputs, batch_size=1, verbose=1)
print('预测结果形状:', results.shape)
# 保存结果到xml文件
for i, img_name in enumerate(img_names):
img_read = imread(img_path + img_name)
# Parse the outputs.
det_xmin = results[i][0]
det_ymin = results[i][1]
det_xmax = results[i][2]
det_ymax = results[i][3]
# 指定根节点/子节点
prediction = ET.Element("prediction")
bndbox = ET.SubElement(prediction, "bndbox")
xmin = ET.SubElement(bndbox, "xmin")
ymin = ET.SubElement(bndbox, "ymin")
xmax = ET.SubElement(bndbox, "xmax")
ymax = ET.SubElement(bndbox, "ymax")
conf = ET.SubElement(bndbox, "conf")
if det_xmax > img_read.shape[1]:
det_xmax = img_read.shape[1] - 1
if det_ymax > img_read.shape[0]:
det_ymax = img_read.shape[0] - 1
xmin.text = str(int(round(det_xmin)))
ymin.text = str(int(round(det_ymin)))
xmax.text = str(int(round(det_xmax)))
ymax.text = str(int(round(det_ymax)))
conf.text = '1.0000'
# 保存结构树
tree = ET.ElementTree(prediction)
tree.write(box_path + img_name[:-3] + 'xml')
显示
这个涉及到了对于预测结果的一个可视化的问题.具体的代码不是很重要,关键是要明确如何更为直观清楚的表达出你的预测的准确与否.
有时,对于无法明确查看的测试集(没有没有测试标签),直接将预测结果绘制出来,可能会更容易理解和判别.
例子 对于目标检测问题,图像上的框远比终端里的文字清楚的多.