【有限域】Finite Fields .Chapter 1:Algebraic Foundations exercise参考答案(1)


参考书籍

R. Lidl and H. Niederreiter, Finite Fields


1. Algebraic Foundations

1.1

Prove that the identity element of a group is uniquely determined.

证明群的单位元是唯一确定的。

证: 反证法,不妨设群 G G G单位元不唯一确定,即 ∃ e 1 , e 2 ∈ G \exists e_1,e_2\in G e1,e2G e 1 ≠ e 2 e_1\ne e_2 e1=e2,其中 e 1 , e 2 e_1,e_2 e1,e2都是群 G G G单位元。由单位元性质有 e 1 = e 1 e 2 = e 2 e_1=e_1e_2=e_2 e1=e1e2=e2,导出矛盾,原假设不成立,故群 G G G单位元唯一确定。

1.2

For a multiplicative group G G G, prove that a nonempty subset H H H of G G G is a subgroup of G G G if and only if a , b ∈ H a,b\in H a,bH implies a b − 1 ∈ H ab^{-1}\in H ab1H. If H H H is finite, then the condition can be replaced by: a , b ∈ H a,b\in H a,bH implies a b ∈ H ab\in H abH.

对于一个乘法群 G G G,证明 G G G的非空子集 H H H G G G的子群当且仅当 a , b ∈ H a,b\in H a,bH导出 a b − 1 ∈ H ab^{-1}\in H ab1H。如果 H H H是有限群,则该条件可以替换为 a , b ∈ H a,b\in H a,bH导出 a b ∈ H ab\in H abH

证: (1)先证必要性,如果 H ≤ G H\le G HG,则对 ∀ a , b ∈ H \forall a,b\in H a,bH,其满足 b − 1 ∈ H b^{-1}\in H b1H,于是有 a b − 1 ∈ H ab^{-1}\in H ab1H,必要性得证;
  再证充分性,即有 ∀ a , b ∈ H \forall a,b\in H a,bH,其都满足 a b − 1 ∈ H ab^{-1}\in H ab1H。因为 G G G是群, H H H G G G的非空子集,所以乘法结合律在 H H H自然成立。因为 ∀ a , b ∈ H ⇒ a b − 1 ∈ H \forall a,b\in H\Rightarrow ab^{-1}\in H a,bHab1H,所以 ∀ a ∈ H ⇒ a a − 1 = e ∈ H \forall a\in H\Rightarrow aa^{-1}=e\in H aHaa1=eH(单位元)。因为 e ∈ H e\in H eH,所以 ∀ a ∈ H ⇒ e a − 1 = a − 1 ∈ H \forall a\in H\Rightarrow ea^{-1}=a^{-1}\in H aHea1=a1H(逆元)。因为 ∀ b ∈ H , b − 1 ∈ H \forall b\in H,b^{-1}\in H bH,b1H,所以 ∀ a ∈ H , a ( b − 1 ) − 1 = a b ∈ H \forall a\in H,a(b^{-1})^{-1}=ab\in H aH,a(b1)1=abH(运算封闭)。综上证得 H H H是群,又由 H H H G G G的非空子集,所以 H H H G G G的子群。
  (2)先证必要性,因为 H ≤ G H\le G HG,所以 ∀ a , b ∈ H ⇒ a b ∈ H \forall a,b\in H\Rightarrow ab\in H a,bHabH,必要性得证。
  再证充分性,因为 G G G是群, H H H G G G的非空子集,所以乘法结合律在 H H H自然成立;因为满足 ∀ a , b ∈ H , a b ∈ H \forall a,b\in H,ab\in H a,bH,abH,所以运算封闭性成立;
   ∀ a ∈ H , a a = a 2 ∈ H \forall a\in H,aa=a^2\in H aH,aa=a2H,假设 a a k = a k + 1 ∈ H aa^{k}=a^{k+1}\in H aak=ak+1H,则有 a a k + 1 = a k + 2 ∈ H aa^{k+1}=a^{k+2}\in H aak+1=ak+2H成立,由第一数学归纳法和 a ∈ H a\in H aH,证得 ∀ k ∈ N + , a k ∈ H \forall k\in N^+,a^k\in H kN+,akH。因为 H H H是有限群,所以 a ∈ H a\in H aH是有限阶元素,那么有 a a a的阶数 n ∈ N + n\in N^+ nN+,于是有 a n = e ∈ H a^n=e\in H an=eH,证得 H H H中存在单位元;
   ∀ a ∈ H \forall a\in H aH,设其阶数为 n ∈ N + n\in N^+ nN+,满足 a n = a n − 1 a = a a n − 1 = e a^n=a^{n-1}a=aa^{n-1}=e an=an1a=aan1=e,于是 ∀ a ∈ H , ∃ a − 1 = a n − 1 ∈ H \forall a\in H,\exists a^{-1}=a^{n-1}\in H aH,a1=an1H使得 a − 1 a = a a − 1 = e a^{-1}a=aa^{-1}=e a1a=aa1=e,证得 H H H中每个元素的逆元素均在 H H H上;
  综上证得 H ≤ G H\le G HG,充分性得证。

1.3

Let a a a be an element of finite order k k k in the multiplicative group G G G. Show that for m ∈ Z m\in \mathbb{Z} mZ we have a m = e a^m=e am=e if and only if k k k divides m m m.

a a a是乘法群 G G G中一个具有有限阶 k k k的元素。证明对于 m ∈ Z m\in \mathbb{Z} mZ,有 a m = e a^m=e am=e当且仅当 k k k整除 m m m

证: 先证必要性,反证法,不妨假设 k ∤ m k\nmid m km且有 a m = e a^m=e am=e,则由带余除法有 m = k n + r m=kn+r m=kn+r,其中 k , r ∈ Z , 0 < r ≤ k − 1 k,r \in \mathbb{Z},0<r\le k-1 k,rZ0<rk1。于是有 e = a m = a k n + r = a k n a r = a r e=a^m=a^{kn+r}=a^{kn}a^r=a^r e=am=akn+r=aknar=ar,因为 0 < r ≤ k − 1 0<r\le k-1 0<rk1,且 a a a的阶为 k k k,所以 a r ≠ e a^r\ne e ar=e,这与 a r = e a^r=e ar=e矛盾,所以原假设不成立, k ∣ m k|m km得证。

1.4

For m ∈ N m\in \mathbb{N} mN, Euler’s function ϕ ( m ) \phi(m) ϕ(m) is defined to be the number of integers k k k with 1 ≤ k ≤ m 1\le k\le m 1km and gcd ⁡ ( k , m ) = 1 \gcd(k,m)=1 gcd(k,m)=1. Show the following properties for m , n , s ∈ N m,n,s\in \mathbb{N} m,n,sN and a prime p p p:
(1) ϕ ( p s ) = p s ( 1 − 1 p ) \phi(p^s)=p^s(1-\frac{1}{p}) ϕ(ps)=ps(1p1);
(2) ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n) if gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1;
(3) ϕ ( m ) = m ( 1 − 1 p 1 ) ⋯ ( 1 − 1 p r ) \phi(m)=m(1-\frac{1}{p_1})\cdots(1-\frac{1}{p_r}) ϕ(m)=m(1p11)(1pr1), where m = p 1 e 1 ⋯ p r e r m=p_1^{e_1}\cdots p_r^{e_r} m=p1e1prer is the prime factor decomposition of m m m

对于 m ∈ N m\in \mathbb{N} mN,欧拉函数 ϕ ( m ) \phi(m) ϕ(m)被定义为满足 1 ≤ k ≤ m 1\le k\le m 1km gcd ⁡ ( k , m ) = 1 \gcd(k,m)=1 gcd(k,m)=1的整数 k k k的个数。证明 m , n , s ∈ N m,n,s\in \mathbb{N} m,n,sN 和素数 p p p满足下列性质:
(1) ϕ ( p s ) = p s ( 1 − 1 p ) \phi(p^s)=p^s(1-\frac{1}{p}) ϕ(ps)=ps(1p1);
(2) ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n) if gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1;
(3) ϕ ( m ) = m ( 1 − 1 p 1 ) ⋯ ( 1 − 1 p r ) \phi(m)=m(1-\frac{1}{p_1})\cdots(1-\frac{1}{p_r}) ϕ(m)=m(1p11)(1pr1),其中 m = p 1 e 1 ⋯ p r e r m=p_1^{e_1}\cdots p_r^{e_r} m=p1e1prer m m m的素因子分解;

证:
(1)因为 p p p是素数,所以 ∀ k ∈ N , k ∈ [ 1 , p s ] , gcd ⁡ ( k , p s ) ≠ 1 \forall k\in \mathbb{N},k\in [1,p^s],\gcd(k,p^s)\ne 1 kN,k[1,ps],gcd(k,ps)=1,这样的 k k k必有 p p p作为其因子。于是有 S p = { k ∣ k ∈ N , k ∈ [ 1 , p s ] , gcd ⁡ ( k , p s ) ≠ 1 } = { p , 2 p , ⋯   , p s − 1 p } ⇒ ∣ S p ∣ = p s − 1 S_p=\{k\mid k\in \mathbb{N},k\in [1,p^s],\gcd(k,p^s)\ne 1\}=\{p,2p,\cdots,p^{s-1}p\}\Rightarrow |S_p|=p^{s-1} Sp={kkN,k[1,ps],gcd(k,ps)=1}={p,2p,,ps1p}Sp=ps1。由欧拉函数定义可知 ϕ ( p s ) = p s − p s − 1 = p s ( 1 − 1 p ) \phi(p^s)=p^s-p^{s-1}=p^s(1-\frac{1}{p}) ϕ(ps)=psps1=ps(1p1)
(2&3)证明(2)之前不妨先证明(3)。考虑任意正整数 m m m可以被素因子分解为 m = p 1 e 1 ⋯ p r e r m=p_1^{e_1}\cdots p_r^{e_r} m=p1e1prer,类似(1)可以注意到有
S i = { k ∣ k ∈ N , k ∈ [ 1 , m ] , gcd ⁡ ( k , p i ) ≠ 1 } = { p i , 2 p i , ⋯   , m p i p i } ⇒ ∣ S i ∣ = n p i , S_{i}=\{k\mid k\in \mathbb{N},k\in [1,m],\gcd(k,p_i)\ne 1\}=\{p_i,2p_i,\cdots,\frac{m}{p_i}p_i\}\Rightarrow |S_{i}|=\frac{n}{p_i}, Si={kkN,k[1,m],gcd(k,pi)=1}={pi,2pi,,pimpi}Si=pin
进一步有
S λ 1 ∩ ⋯ ∩ S λ t = { p λ 1 ⋯ p λ t , 2 p λ 1 ⋯ p λ t , n p λ 1 ⋯ p λ t } ⇒ ∣ S λ 1 ∩ ⋯ ∩ S λ t ∣ = n p λ 1 ⋯ p λ t , S_{\lambda_1}\cap\cdots\cap S_{\lambda_t}=\{p_{\lambda_1}\cdots p_{\lambda_t},2p_{\lambda_1}\cdots p_{\lambda_t},\frac{n}{p_{\lambda_1}\cdots p_{\lambda_t}}\}\Rightarrow|S_{\lambda_1}\cap\cdots\cap S_{\lambda_t}|=\frac{n}{p_{\lambda_1}\cdots p_{\lambda_t}}, Sλ1Sλt={pλ1pλt,2pλ1pλt,pλ1pλtn}Sλ1Sλt=pλ1pλtn,
其中 t ≤ r , λ i ∈ { k ∈ N ∣ 1 ≤ k ≤ r } t\le r,\lambda_i\in\{k\in\mathbb{N}\mid 1\le k\le r\} tr,λi{kN1kr}且对 ∀ i ≠ j , λ i ≠ λ j \forall i\ne j,\lambda_i\ne\lambda_j i=j,λi=λj
综上由容斥定理得
∣ S λ 1 ∪ ⋯ ∪ S λ t ∣ = ∑ 1 ≤ i ≤ r ∣ S i ∣ − ∑ 1 ≤ i ≤ j ≤ r ∣ S i ∩ S j ∣ + ⋯ + ( − 1 ) r − 1 ∣ S 1 ∩ ⋯ ∩ S r ∣ = ∑ 1 ≤ i ≤ r n p i − ∑ 1 ≤ i ≤ j ≤ r n p i p j + ⋯ + ( − 1 ) r − 1 n p 1 ⋯ p r \begin{aligned} |S_{\lambda_1}\cup\cdots\cup S_{\lambda_t}|&=\sum\limits_{1\le i\le r}|S_i|-\sum\limits_{1\le i\le j\le r}|S_i\cap S_j|+\cdots+(-1)^{r-1}|S_1\cap\cdots\cap S_r|\\ &=\sum\limits_{1\le i\le r}\frac{n}{p_i}-\sum\limits_{1\le i\le j\le r}\frac{n}{p_ip_j}+\cdots+(-1)^{r-1}\frac{n}{p_1\cdots p_r} \end{aligned} Sλ1Sλt=1irSi1ijrSiSj++(1)r1S1Sr=1irpin1ijrpipjn++(1)r1p1prn
于是有
ϕ ( m ) = ∣ S ˉ 1 ∩ S ˉ 2 ∩ ⋯ ∩ S ˉ r ∣ = m − ∣ S 1 ∪ S 2 ∪ ⋯ ∪ S r ∣ = m − ( m p 1 + ⋯ + m p r ) + ( m p 1 p 2 + m p 1 p 3 + ⋯ + m p r − 1 p r ) + ( − 1 ) r − 1 m p 1 p 2 ⋯ p r = m ( 1 − 1 p 1 ) [ 1 − ( m p 2 + ⋯ + m p r ) + ( m p 2 p 3 + ⋯ + m p r − 1 p r ) + ⋯ + ( − 1 ) r − 2 m p 2 ⋯ p r ] = ⋯ = m ( 1 − 1 p 1 ) ⋯ ( 1 − 1 p r ) \begin{aligned} \phi(m)&=|\bar{S}_1\cap\bar{S}_2\cap\cdots\cap\bar{S}_r|\\ &=m-|S_1\cup S_2\cup\cdots\cup S_r|\\ &=m-(\frac{m}{p_1}+\cdots+\frac{m}{p_r})+(\frac{m}{p_1p_2}+\frac{m}{p_1p_3}+\cdots+\frac{m}{p_{r-1}p_r})+(-1)^{r-1}\frac{m}{p_1p_2\cdots p_r}\\ &=m(1-\frac{1}{p_1})[1-(\frac{m}{p_2}+\cdots+\frac{m}{p_r})+(\frac{m}{p_2p_3}+\cdots+\frac{m}{p_{r-1}p_r})+\cdots+(-1)^{r-2}\frac{m}{p_2\cdots p_r}]\\ &=\cdots\\ &=m(1-\frac{1}{p_1})\cdots(1-\frac{1}{p_r}) \end{aligned} ϕ(m)=Sˉ1Sˉ2Sˉr=mS1S2Sr=m(p1m++prm)+(p1p2m+p1p3m++pr1prm)+(1)r1p1p2prm=m(1p11)[1(p2m++prm)+(p2p3m++pr1prm)++(1)r2p2prm]==m(1p11)(1pr1)
综上(3)得证,下面来证明(2),现在考虑整数 n n n,它的素因子分解为 n = q 1 b 1 q 2 b 2 ⋯ q s b s n=q^{b_1}_1q^{b_2}_2\cdots q^{b_s}_s n=q1b1q2b2qsbs。因为 gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1,所以 p 1 , p 2 , ⋯   , p r , q 1 , q 2 , ⋯   , q s p_1,p_2,\cdots,p_r,q_1,q_2,\cdots,q_s p1,p2,,pr,q1,q2,,qs两两不同,所以 m n = p 1 e 1 ⋯ p r e r q 1 b 1 q 2 b 2 ⋯ q s b s mn=p_1^{e_1}\cdots p_r^{e_r}q^{b_1}_1q^{b_2}_2\cdots q^{b_s}_s mn=p1e1prerq1b1q2b2qsbs。于是有
ϕ ( m n ) = m n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p r ) ( 1 − 1 q 1 ) ( 1 − 1 q 2 ) ⋯ ( 1 − 1 q s ) = ϕ ( m ) ϕ ( n ) \phi(mn)=mn(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots(1-\frac{1}{p_r})(1-\frac{1}{q_1})(1-\frac{1}{q_2})\cdots(1-\frac{1}{q_s})=\phi(m)\phi(n) ϕ(mn)=mn(1p11)(1p21)(1pr1)(1q11)(1q21)(1qs1)=ϕ(m)ϕ(n)
于是(2)的结论得证。

1.5

Calculate ϕ ( 490 ) \phi(490) ϕ(490) and ϕ ( 768 ) \phi(768) ϕ(768).

计算 ϕ ( 490 ) \phi(490) ϕ(490) ϕ ( 768 ) \phi(768) ϕ(768).

解: 结合1.4的结论,因为 490 = 2 × 5 × 7 2 , 768 = 2 5 × 3 490=2\times5\times7^2,768=2^5\times 3 490=2×5×72,768=25×3,所以 ϕ ( 490 ) = 168 , ϕ ( 768 ) = 256 \phi(490)=168,\phi(768)=256 ϕ(490)=168,ϕ(768)=256


备注

本文是对我在做《Finite Fields》这本书中exercises习题的一个回顾与总结,其不完全包含所有exercises的所有习题,答案仅供参考。如果读者有发现纰漏,欢迎联系我进行补充与修正。
如果觉得本文对您有所帮助的话可以点赞和收藏。

  • 18
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值