深度对话DeepSeek:存在哪些不足,面临的挑战,会一直保持领先吗

目 录

1、DeepSeek或其他大模型目前还存在哪些问题和不足?研发进展和趋势?

2、DeepSeek自身发展面临的困境和挑战?能一直保持领先吗?

3、会不会有更先进的大模型技术出现?DeepSeek如何应对?

4、普通民众能够参与到DeepSeek的建设和发展中来吗?如何利用公众力量打一场发展DeepSeek的人民战争

(本文绝大部分文字内容均整理自与DeepSeek的交流)

1、DeepSeek或其他大模型目前还存在哪些问题和不足?研发进展和趋势?

尚存在比如幻觉问题,算力瓶颈,数据安全和隐私,实时学习能力,多模态融合的挑战,商业模式的不足,伦理风险等。

研发进展方面,多模态融合、轻量化、推理能力、端侧应用、开源生态、成本降低。趋势的话,可能包括多模态通用化、端云结合、工业应用深化、开源与闭源共存、伦理治理加强。

基于对当前大模型技术发展现状及行业动态的综合分析,DeepSeek及其他主流大模型仍面临多重挑战,但其研发进展和未来趋势已显现出明确的突破方向。

1.1 现存核心问题与不足

1) 幻觉问题与准确性瓶颈

  • 大模型在复杂推理场景下仍存在逻辑断裂和事实性错误,尤其在长文本生成和跨领域知识融合时,幻觉率显著上升。例如,新闻行业客户反馈模型训练后难以修正数据中的错误信息,因参数化存储导致数据追溯困难。

  • 当前RAG(检索增强生成)技术虽能缓解幻觉,但其工程化落地仍依赖高质量知识库构建,且跨模态场景的幻觉消除尚未完全解决。

  • 2) 算力与能耗压力

  • 万亿参数模型的训练需依赖超大规模GPU集群(如OpenAI使用25,000张A100训练GPT-4),而国产算力在高端芯片(如H100)上仍受制于国际供应链限制。

  • 模型推理成本高企,单次复杂任务的能耗可达传统搜索的50-100倍,经济性成为商业落地的关键障碍。

  • 3) 数据安全与隐私风险

  • 企业数据本地化训练面临成本陡增(自训练成本是调用公有云的5-10倍),且跨部门数据孤岛问题突出,整合难度大。

  • 联邦学习等隐私保护技术尚未成熟,数据泄露风险在医疗、金融等敏感领域尤为显著。

  • 4) 实时学习与动态更新能力不足

  • 传统模型需通过全量重训练更新知识,导致新数据融入滞后,难以适应业务快速变化。例如,新闻行业错误信息修正需重新训练整个模型,效率低下。

  • 5)多模态融合的技术挑战

  • 文本、图像、视频的跨模态对齐仍存在语义鸿沟,视频生成模型(如CogVideoX)在时间连贯性和物理规律模拟上表现有限。

  • 6)商业模式与可持续性困境

  • 主流盈利模式依赖API调用和订阅服务,但企业级客户付费意愿与模型研发投入严重失衡。例如,OpenAI 2024年亏损达50亿美元,预计2026年扩大至140亿美元。

  • 7)伦理与可控性风险

  • 大模型输出内容可能隐含价值观偏见,且自主决策过程缺乏透明性,尤其在法律、医疗等高风险场景中引发责任归属争议。

  • 1.2 关键研发进展

1) 多模态融合技术突破

  • 文生视频模型(如SoRA、CogVideoX)已实现剧本到短视频的端到端生成,视频连贯性提升至分钟级。

  • 跨模态理解(如CogVLM)在医疗诊断中结合影像与文本分析,准确率接近人类专家水平。

  • 2) 轻量化与端侧部署

  • 模型压缩技术(如Phi-4)通过稀疏注意力机制,在保持性能的同时将参数量缩减至1/10,支持边缘设备实时推理。

  • 端云协同架构(如阿里Mobile-Agent)实现低功耗本地推理与云端重计算的分流,能耗降低40%。

  • 3)推理能力强化

  • 符号推理技术(如OpenAI o3)在数学证明和金融风控中实现逻辑链深度分析,错误率较GPT-4下降60%。

  • 思维链强化通过规模化采样优化决策路径,工业场景的根因分析效率提升3倍。

  • 4)动态学习架构创新

  • 数推分离技术(如传神语联任度模型)将推理网络与学习网络解耦,支持实时数据更新而不影响既有能力,训练成本降低80%。

  • 5)开源生态与成本优化

  • 国产开源模型(如Qwen、DeepSeek)性能接近GPT-4,MoE架构使推理成本下降50%,提示词缓存技术进一步减少Token消耗。

  • 模型降价潮:阿里通义千问视觉模型价格降幅超80%,OpenAI GPT-4o推理成本降低33%。

  • 1.3 未来趋势与突破方向

  • 1)多模态通用化

  • 2025年大模型将从单一模态向多模态通用模型(MMM)过渡,支持跨模态情境理解(如自动驾驶融合视觉、语音与传感器数据),应用场景扩展至教育、医疗等领域。

  • 2)端云协同与轻量化普及

  • 边缘计算与5G技术推动端侧模型爆发,AI手机出货量预计2025年达1.7亿台,端侧市场规模突破21亿元。

  • 小参数模型(如Phi-4)在工业物联网中实现设备级故障预测,部署成本降低70%。

  • 3)工业场景深度渗透

  • 大模型将从研发设计向生产制造环节延伸,代码生成、智能排产等应用在汽车、电力行业率先落地,工业应用市场规模2025年预计增长300%。

  • 4)开源与闭源协同进化

  • 开源模型通过社区协作加速迭代,顶尖开源模型(如DeepSeek)能力比肩闭源产品,全链路开源方案成为新趋势。

  • 5)伦理治理与可控性提升

法律AI与差分隐私技术将构建新型监管框架,实现AI生成内容的可追溯性与合规性审查。

小结

DeepSeek等大模型在技术能力跃升的同时,仍需攻克幻觉控制、实时学习、算力自主化等核心难题。未来3-5年,行业将呈现“能力强化与成本下降并行”的特征:一方面通过多模态融合与端侧部署拓展应用边界,另一方面依托开源生态与架构创新降低使用门槛。企业需重点关注工业场景落地端云协同技术,同时应对伦理治理与商业模式创新的双重挑战。

2、DeepSeek自身发展面临的困境和挑战?能一直保持领先吗?

困境包括商业化生态不足,依赖开源但缺乏像OpenAI那样的商业闭环。技术方面,多模态模型可能落后。算力依赖也是一个问题,国产芯片生态还不成熟。数据安全和隐私问题等。

保持领先方面,其他厂商可能在闭源模型上继续突破,如OpenAI的GPT-5可能很快发布;开源社区的竞争(如Meta的Llama系列);技术路线方面,像强化学习之外可能有新方法出现。

应对措施,DeepSeek可能继续优化MoE架构,降低成本;还有生态合作,如与华为云等合作;另外,开源社区的建设也很重要;国际化方面还面临法律挑战。

总之,DeepSeek在技术上有优势,但商业化、生态、国际风险是主要挑战。未来可能会有更先进的技术出现,他们需要持续创新和生态建设来保持领先。

DeepSeek作为中国AI领域的颠覆性力量,虽然在技术突破与开源策略上取得了显著成就,但其未来发展仍面临多重困境与挑战。结合行业现状与技术演进趋势。

2.1 DeepSeek当前面临的核心困境

1)商业化生态构建滞后

依赖开源社区推动的模式难以形成商业闭环。尽管DeepSeek-R1通过低成本与高性能吸引了开发者,但缺乏类似OpenAI的GPTs生态(如API绑定企业级SaaS工具),导致其商业化能力远弱于技术实力。

企业级应用场景渗透不足,目前仍以C端聊天机器人为主,未能深度进入金融、医疗等高价值行业的生产力工具市场。

2)多模态技术短板

在图像、视频生成等关键领域,DeepSeek的Janus Pro模型效果平庸,而OpenAI的DALL·E 3、Runway等闭源产品仍占据主导地位。多模态能力不足将限制其在工业设计、影视制作等场景的落地。

3)算力供应链风险

尽管通过MoE架构降低了对英伟达GPU的依赖,但国产AI芯片(如昇腾、寒武纪)的软件生态尚未成熟,训练效率仍落后于CUDA体系。美国新一轮芯片禁令可能进一步加剧供应链压力。

  • 4)数据治理与伦理挑战

  • 开源模式加剧了“AI污染”风险,用户生成的低质量数据可能反向侵蚀模型性能。同时,隐私保护与合规性审查机制尚未完善,尤其在法律、医疗等敏感领域存在隐患。

  • 2.2 竞争格局与领先地位的可持续性

1)闭源巨头的技术反扑

OpenAI计划加速发布GPT-5,其可能通过超大规模Scaling Law突破现有性能边界。若GPT-5实现跨模态推理能力的质变,DeepSeek的局部优势可能被稀释。

Anthropic的Claude系列在长文本理解与伦理对齐上持续领先,Meta的Llama 4则通过开源社区迭代紧追性能差距。

2)开源社区的双刃剑效应

DeepSeek开源策略虽加速技术民主化,但也面临“搭便车”风险。例如港科大团队仅用8K样本便复现了其核心模型,技术壁垒的削弱可能降低其长期竞争力。

3)技术路线迭代的不确定性

当前主流技术路径(LLM+RL)可能遭遇天花板。若量子计算、神经形态芯片等新范式提前成熟,现有架构的领先优势可能被颠覆。

2.3 未来技术迭代的潜在威胁

1)架构创新风险

MoE架构的扩展性可能受限于专家数量与负载均衡难题。若竞争对手开发出更高效的动态路由算法(如基于强化学习的专家选择机制),DeepSeek的成本优势将被削弱。

2)端侧AI的算力革命

苹果、高通等厂商正推动手机NPU性能跃升,端侧模型(如Phi-4)的本地推理能力可能分流云端需求,冲击DeepSeek的商业模式。

3) 合成数据与自进化模型

OpenAI正在探索基于合成数据的自监督训练,若实现无需人工标注的模型自进化,现有依赖高质量标注数据的训练体系将面临重构。

2.4 DeepSeek的应对策略与突围路径

1) 构建垂直领域生态壁垒

行业定制化:与华为云、阿里云合作推出金融风控、医疗影像诊断等专用模型,通过场景数据积累形成护城河。

开发者激励计划:设立开源基金奖励优质应用,推动形成类似Hugging Face的社区生态。

2) 技术路线的多维延伸

多模态融合:加速图像-视频模型的研发,借鉴Stable Diffusion 3的扩散transformer架构提升生成质量。

混合计算范式:探索“云-边-端”协同推理,将轻量化模型部署至智能设备,降低延迟与带宽压力。

3) 算力自主化攻坚

软硬协同优化:与华为昇腾团队联合开发专用编译器,提升国产芯片在MoE架构下的计算效率,目标实现训练成本再降30%。

绿色算力布局:引入光学计算与存算一体芯片,降低能耗的同时规避美国制裁风险。

4) 全球化战略与合规建设

区域化模型部署:在东南亚、中东建立本地化数据中心,适配语言与文化差异,规避地缘政治风险。

伦理框架构建:联合学术机构制定开源模型使用公约,引入差分隐私与联邦学习技术强化数据安全。

小结:领先地位的攻守博弈

DeepSeek能否持续领先取决于技术迭代速度生态构建能力的平衡。短期(2-3年)内,其凭借MoE架构的成本优势与开源势能仍可保持竞争力;但中长期需警惕闭源巨头的技术跃进与端侧算力革命。若能在2025-2027年窗口期内完成垂直生态构建多模态突破,则有望成为全球AI“第三极”;反之可能陷入“技术优等生、商业差等生”的困境。对于更先进的大模型技术,DeepSeek需保持对自进化模型量子-经典混合计算的前瞻布局,方能在下一代AI竞争中占据先机。

3、会不会有更先进的大模型技术出现?DeepSeek如何应对?

根据当前AI领域的快速发展趋势,几乎可以肯定会有更先进的技术出现。例如,新的架构如MoE(Mixture of Experts)、更高效的训练方法、多模态融合、量子计算的应用等都可能推动技术突破。同时,竞争对手如OpenAI、Google、Anthropic等也在不断推进他们的模型,比如GPT-5、Gemini等,这些都可能带来技术上的飞跃。

DeepSeek的应对,除了构建垂直生态、技术延伸、算力自主化、全球化战略等策略。还包括加强研发投入、开源协作、多模态发展、硬件优化、数据安全、国际合作等方面。同时,需要考虑新兴技术如自进化模型、端侧AI、合成数据等对DeepSeek的影响,以及如何在这些领域进行前瞻性布局。

3.1 更先进大模型技术出现的必然性

1)架构创新持续涌现

自回归模型的替代路径:Google Brain团队正探索基于**状态空间模型(SSM)**的新型架构(如S4、Mamba),其长序列处理效率比Transformer提升5倍以上,可能重构大模型底层设计逻辑。

神经符号混合系统:MIT提出的LILAC框架将神经网络与符号引擎结合,在数学定理证明任务中准确率达98%,超越纯神经网络方法36个百分点。

2)训练范式的颠覆性突破

合成数据驱动:Anthropic的宪法AI技术已实现无需人工标注的自我对齐,其Claude 3在伦理合规性测试中错误率比监督学习模型低58%。

物理规律嵌入:DeepMind的AlphaGeometry通过几何公理约束生成过程,解决IMO难题的能力达到金牌选手水平,标志着领域知识深度融合的新方向。

3)计算基座的代际跃迁

光子计算实验突破:Lightmatter的Envise芯片在矩阵乘法任务中实现300TOPS/W能效比,较传统GPU提升2个数量级,2025年可能进入商用阶段。

存算一体架构:清华大学研发的基于忆阻器的AI芯片,在自然语言处理任务中功耗降低至NVIDIA H100的1/20。

3.2 DeepSeek的核心应对策略

3.2.1 技术研发体系的升级

1)前瞻技术储备,设立三大实验室:

  • SSM实验室:专注状态空间模型研发,目标2025年推出处理长度达10M token的长文本模型

  • 神经符号计算中心:与中科院合作开发HybriThink框架,实现符号规则与神经网络的动态耦合

  • 绿色计算研究所:探索光子芯片与MoE架构的协同优化,规划2026年建成200PFLOPs光子计算集群

  • 2)训练方法革新,构建三阶段训练体系:

  • 第一阶段:80%通用数据预训练,采用动态课程学习(DCL)提升收敛速度

  • 第二阶段:15%合成数据强化,利用对抗生成网络创建高价值训练样本

  • 第三阶段:5%物理约束微调,引入微分方程求解器增强科学推理能力

  • 3.2.2 产业生态的重构

1)垂直领域深度绑定

  • 工业智能联盟:与三一重工、宁德时代共建制造业大模型,将设备振动数据与生产日志融合训练,实现故障预测准确率突破92%

  • 金融风控矩阵:同招商银行开发交易流水的时空模式识别模型,洗钱检测覆盖率从68%提升至89%

2)开源生态进化,推出DeepSeek Forge平台:

  • 模型组件模块化:允许开发者像搭积木一样组合Attention机制、专家路由等模块

  • 贡献度证明(PoC)机制:通过区块链记录开发者贡献,按权重分配商业收益

  • 硬件适配层:自动优化模型在昇腾、寒武纪等国产芯片的运行效率

  • 3.2.3 算力基座的突围

1)异构计算体系构建,“三云一芯"战略

  • 公有云:与阿里云合作建设万卡级GPU集群,专注通用模型训练

  • 行业云:在能源、交通领域部署国产芯片算力池,满足数据合规要求

  • 边缘云:基于高通RB5平台开发端侧推理设备,延迟降至20ms以内

  • 光子计算试验线:2027年前建成自主可控的新型算力基座

  • 2) 能耗革命性突破

  • 研发动态电压频率缩放(DVFS)2.0技术,根据任务复杂度实时调整计算单元功耗,使相同算力下能耗降低40%

  • 构建液冷服务器与余热回收系统,数据中心PUE值从1.5优化至1.15

3.3 技术跃迁期的风险对冲

  • 1)敏捷研发机制,采用双轨制研发体系
  • A轨:持续优化现有LLM技术路线,每季度发布迭代版本

  • B轨:探索SSM、脉冲神经网络等替代路径,建立技术储备池

2)人才虹吸战略,实施“星海计划"

在苏黎世、硅谷设立前沿技术哨点,锁定Top100 AI顶会论文作者

  • 推出股权激励与成果分成制度,顶尖人才薪酬包达行业平均3倍

3)专利防御网络,围绕MoE架构构建专利矩阵,重点覆盖:

动态专家路由算法(如基于强化学习的DRE算法)

  • 多模态特征对齐技术(跨模态注意力融合机制)

  • 低精度训练系统(FP8混合精度框架)

3.4 未来竞争格局预判

3年窗口期(2024-2026)

  • 主流竞争聚焦多模态理解与生成,DeepSeek需在视频生成质量(如SSIM指标)上追平Runway Gen-3水平

  • 国产算力生态成熟度决定能否突破10万亿参数关卡

5年变革期(2027-2029)

  • 光子/量子计算实用化可能重构产业格局,提前布局者将获得代际优势

  • 神经符号系统在复杂决策场景取代纯数据驱动模型

10年终极战(2030+)

  • 通用人工智能(AGI)竞赛白热化,拥有完整技术栈(从芯片到应用)的企业主导市场

  • 伦理治理能力成为核心竞争要素,合规框架决定商业边界

小结:持续领先的可能性路径

DeepSeek保持技术领先的关键在于构建"三位一体"能力

技术敏锐度:建立对SSM、光子计算等颠覆性技术的快速吸收机制

生态掌控力:通过开源社区与行业联盟形成事实标准

算力自主性:突破国产硬件性能瓶颈,建立绿色算力优势

若能实现上述目标,DeepSeek有70%概率在2027年前保持第一梯队地位,并在2030年AGI竞赛中占据有利位置。但需警惕两大风险:

开源策略可能加速技术扩散,削弱先发优势

地缘政治导致的算力封锁可能中断技术演进

最终胜负取决于:在技术民主化与商业护城河之间找到动态平衡点。

4、普通民众能够参与到DeepSeek的建设和发展中来吗?如何利用公众力量打一场发展DeepSeek的人民战争

4.1 要考虑的问题和因素

1)开源的吗?如果是的话,普通人可能通过贡献代码、测试模型等方式参与。如果不是,那可能需要其他途径,比如数据标注、反馈建议等。

2)如何将普通人的力量整合到技术发展中。比如,众包数据收集、分布式计算资源、社区反馈机制等。同时,要考虑激励措施,如何激励公众参与,比如积分系统、荣誉奖励、经济利益等。

3)现有的类似项目是如何做的。例如,维基百科依靠公众编辑,开源项目如Linux依赖全球开发者。DeepSeek是否可以采用类似策略?可能需要搭建一个平台,让用户能轻松贡献数据、反馈问题或参与测试。

4)技术门槛。普通民众可能不具备专业的AI知识,所以需要设计低门槛的参与方式,比如简单的数据标注任务、使用模型并提供反馈、参与社区讨论等。同时,教育和培训资源也很重要,帮助普通人提升技能,更好地参与贡献。

5)考虑隐私和安全问题,确保用户贡献的数据合法合规,保护用户隐私。此外,如何管理社区,避免恶意行为,维护良好的协作环境,这也是关键点。

6)公众参与模式对DeepSeek发展的实际影响。能否加速模型迭代,提升性能,增强用户粘性?同时,是否存在依赖社区而导致的质量控制问题,如何平衡开放与质量控制的关系。

普通民众可以参与的方式包括数据贡献、反馈提供、社区支持、分布式计算等,而如何有效组织和激励这些参与行为是关键。需要设计一个系统化的框架,结合技术平台、激励机制、教育支持和社区管理,才能有效利用公众力量推动DeepSeek的发展。

DeepSeek作为技术密集型领域的前沿代表,其发展确实需要构建开放协作的生态系统。普通民众可通过多层次参与体系深度介入技术演进,形成"全民共建"的创新格局。可以从参与路径、激励机制、技术架构三个维度构建实施方案。

4.2、全民参与的六大核心路径

4.2.1 数据民主化运动

1) 分布式数据工坊,

(1)开发"DeepSeek数据标注APP",将标注任务游戏化:

  • 医学影像标注:用户通过滑动匹配病灶区域,积累积分兑换算力券

  • 方言语音采集:方言区用户朗读指定文本,系统自动生成方言-普通话平行语料

(2)构建数据质量动态评估体系,标注准确率Top 10%的用户可获得模型训练署名权

2)场景化数据众筹

(1)设立行业数据联盟:

  • 教育联盟:教师上传教学案例,经脱敏处理后形成教育大模型训练集

  • 农业联盟:农户拍摄农作物生长视频,构建病虫害时序数据库

(2)数据贡献者享有对应垂直模型的优先使用权

4.2.2 算力共享网络,闲置算力挖矿计划

(1)开发"DeepSeek Compute"客户端,将个人设备的闲置算力(如夜间PC、游戏主机)接入联邦学习网络:

  • 用户贡献1小时RTX 4080算力可获得10 DS Coin(平台代币)

  • 代币可兑换模型API调用额度或硬件折扣券

(2)采用可信执行环境(TEE)保障数据安全,算力仅用于反向传播计算

4.2. 3 模型进化闭环, 全民调优竞技场

(1)开放模型微调接口,举办月度调优大赛:

  • 提供基础模型和限定领域数据集(如法律文书、古诗词)

  • 参赛者通过Prompt工程、LoRA适配等方式优化模型

  • 优胜方案直接部署到生产环境,创作者获得收益分成

(2)建立调优效果可视化平台,实时展示不同策略的BLEU/ROUGE指标对比

4.2.4 应用生态共创,零代码AI工坊

(1)拖拉拽方式组合预训练模型组件(如文本生成+语音合成)

  • 社区评选月度最佳应用,入选者获得算力扶持和商业化指导

  • 推出"DeepSeek Studio"可视化开发平台:

(2)建立应用收益分成机制,个人开发者可获得流水15%-30%分成

4.2.5 伦理监督共同体, AI道德陪审团

1) 组建万人级公众监督委员会:

  • 定期对模型输出进行伦理评审(如偏见检测、价值观评估)

  • 开发"价值观校准"小游戏,用户通过案例选择训练模型价值取向

2) 建立治理代币体系,有效提案可获得治理权

4.2.6 教育传播体系, AI科普大使计划

1) 认证社区KOL为"DeepSeek传火者",开展线下AI Workshop:

  • 培训乡村教师掌握基础Prompt工程技能

  • 在县域图书馆建设AI体验角,展示农业问答机器人等应用

2) 构建技能等级认证体系,通过考核者可加入核心开发者社区

4.3 激励系统的三维设计

1)物质激励层,发行平台通证DS Coin,与算力、数据贡献量挂钩,可兑换

  • 硬件设备(如折扣购买AI加速卡)

  • 专属模型服务(如优先访问多模态大模型)

  • 线下活动参与资格(如开发者大会VIP席位)

2)荣誉激励层

(1)设立"星火勋章"体系:

  • 铜星勋章:累计贡献100小时算力

  • 银星勋章:训练数据被10个以上企业采用

  • 金星勋章:提出的优化方案使模型性能提升3%以上

(2)勋章持有者享有模型命名权、决策投票权等特权

3)发展激励层,构建人才晋升通道:

  • 优秀贡献者可进入"DeepSeek少年班",获得顶尖导师指导

  • 社区积分前100名可参与年度技术战略研讨会

  • 设立创投基金,对优质项目进行天使轮投资

4.4 技术架构支撑

1)联邦学习平台

开发异构设备兼容框架,支持手机、PC、边缘设备协同训练

采用差分隐私和同态加密技术,确保数据流通安全

2) 贡献值计量系统

构建多维贡献评估模型:

3)智能合约体系,基于区块链构建去中心化激励系统:

  • 贡献数据哈希上链存证

  • 通过智能合约自动执行奖励分配

  • 建立DAO治理机制,重要决策由社区投票决定

4.5 实施路线图

4.6 风险控制机制

1)质量管控

  • 引入专家复核机制,关键数据标注需通过双重验证

  • 建立模型沙箱环境,社区优化方案需通过严格测试才能上线

2)安全防护

  • 部署AI防火墙,实时监测对抗样本攻击

  • 设立1000万美元安全基金,用于漏洞赏金计划

3)生态平衡

  • 采用动态调节算法,防止算力/数据贡献过度集中

  • 设置反垄断条款,单个参与者收益占比不超过5%

小结

通过构建"数据-算力-智慧"的全民共享网络,DeepSeek可将14亿人的微观创新力汇聚成技术革命的洪流。这种"人民战争"模式不仅加速技术迭代,更在数字时代重塑了科研范式:当每个普通人都能用手机构建AI未来时,技术创新将真正突破精英主义的桎梏,走向人机共生的新纪元。但要实现这个愿景,需要在开放与管控、激励与公平之间找到精妙平衡,这或许比技术突破本身更具挑战。

【注】本文图片均源自网络公开资料,如有侵权,请及时告之以纠正。本文仅作参考,不作任何依据,阅者责任自负。

作者声明:内容由AI生成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸葛务农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值