机器学习练习 6 - Support Vector Machines(支持向量机)

机器学习练习 6 - Support Vector Machines(支持向量机)

Introduction

在本实验中,将使用支持向量机(SVMs)来构建垃圾邮件分类器。

1 Support Vector Machines(支持向量机)

在本实验的前半部分,将使用包含各种 2 D 2D 2D数据集的支持向量机(SVMs)。对这些数据集进行实验可以更加直观地了解SVMs的工作原理,以及如何在SVMs上使用高斯核。在本实验的后半部分,将使用SVMs来构建垃圾邮件分类器。

1.1 Example Dataset 1

从一个可以由线性边界分隔的二维数据集开始。在这个数据集中,正例子(用+表示)和负例子(用o表示)的位置表明可以由线性边界分割。但是,注意,在最左边有一个异常的正例子+,大约是 ( 0.1 , 4.1 ) (0.1,4.1) (0.1,4.1)。在本实验中,将看到这种特殊的例子如何影响SVM的决策边界。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
from sklearn import svm
import seaborn as sns
def load_mat(path):
    data=loadmat(path)
    X=data['X']
    y=data['y']
    return X,y
path="./data/ex6data1.mat"
X,y=load_mat(path)
def plot_data(X,y,fig,ax):
    data=pd.DataFrame(X,columns=['X1','X2'])
    data['y']=y
    positive=data[data['y'].isin([1])]
    negative=data[data['y'].isin([0])]
    
    ax.scatter(positive['X1'],positive['X2'],s=30,marker='+',c='black',label='Positive')
    ax.scatter(negative['X1'],negative['X2'],s=30,marker='o',c='orange',label='Negative')
    ax.set_xlabel('X1')
    ax.set_ylabel('X2')
    ax.legend()
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X, y,fig,ax)
plt.title("Example Dataset 1")
plt.show()


png

在本部分的实验中,将尝试对SVMs使用不同的C参数值。C参数是一个正数,它控制了对错误分类的训练数据的惩罚,其中C较大,说明SVM尝试正确地分类所有的数据,C类似于 1 λ \frac{1}{\lambda} λ1 λ \lambda λ是之前用于逻辑回归的正则化参数。

大多数SVM库会自动添加额外的特征,比如: x 0 , θ 0 x_0,\theta_0 x0,θ0,所以无需手动添加。

svc = svm.SVC(C=1, kernel='linear')
svc
SVC(C=1, kernel='linear')
svc.fit(X,y.flatten())
svc.score(X,y.flatten())
0.9803921568627451

可视化分类边界

def plot_boundary(svc,X,y,C,diff=10**-3):
    x1,x2=decision_boundary(svc,X,diff)
    fig,ax=plt.subplots(figsize=(8,6))
    plot_data(X, y,fig,ax)
    ax.scatter(x1,x2,s=5,c='blue',label='Boundary')
    plt.title("SVM Decision Boundary with C = {} (Example Dataset 1)".format(C))
    plt.show()
def decision_boundary(svc,X,diff=10**-3):
    x1_min,x1_max=X[:,0].min(),X[:,0].max()
    x2_min,x2_max=X[:,1].min(),X[:,1].max()
    x1=np.linspace(x1_min,x1_max,2000)
    x2=np.linspace(x2_min,x2_max,2000)#将整个平面分割为2000*2000的小方格,如果后面感觉运行太久可以适当缩小到500
    cordinates = [(x, y) for x in x1 for y in x2]
    x1, x2 = zip(*cordinates)
    c_val=pd.DataFrame({'x1':x1,'x2':x2})
    c_val['cval']=svc.decision_function(c_val[['x1','x2']])#对所有的小方格的:预测样本的置信度得分(接近0的就是分割边界)
    decision=c_val[np.abs(c_val['cval'])<diff]
    return decision.x1,decision.x2

C=1时,发现SVM将决策边界放在两个数据集之间的间隙中,并将最左边的数据点错误分类。

plot_boundary(svc,X,y,1,10**-3)


png

svc2 = svm.SVC(C=100,kernel='linear')
svc2
SVC(C=100, kernel='linear')
svc2.fit(X,y.flatten())
svc2.score(X,y.flatten())
1.0

C=100时,发现SVM对每个数据都正确分类,但是该决策边界与数据匹配并不自然。

plot_boundary(svc2,X,y,100,10**-3)


png

综上:

  • C比较小时模型对错误分类的惩罚较小,比较宽松,允许一定的错误分类存在,间隔较大。
  • C比较大时模型对错误分类的惩罚较大,比较严格,错误分类少,间隔较小。

1.2 SVM with Gaussian Kernels

在这节实验,将使用SVMs来进行非线性分类并且在非线性可分的数据集上使用高斯核SVMs

1.2.1 Gaussian Kernel(高斯核)

为了用SVM找到非线性决策边界,需要实现一个高斯核。可以把高斯核看作一个相似度函数,用来度量一对数据 ( x ( i ) , x ( j ) ) (x^{(i)},x^{(j)}) (x(i),x(j))之间的"距离"。高斯核有一个参数 σ \sigma σ,决定了相似性下降至 0 0 0的速度。

高斯核定义如下:

image-20220327163110849

这里使用sklearn自带的svm中的核函数即可:

def GaussKernel(x1,x2,sigma):
    return np.exp(-np.sum((x1-x2)**2)/(2*sigma**2))

使用示例数据 x 1 = [ 1 , 2 , 1 ] , x 2 = [ 0 , 4 − 1 ] , σ = 2 x_1=[1,2,1],x_2=[0,4-1],\sigma=2 x1=[1,2,1],x2=[0,41],σ=2运行的结果约为 0.324652 0.324652 0.324652

x1,x2,sigma=np.array([1,2,1]),np.array([0,4,-1]),2
GaussKernel(x1, x2, sigma)
0.32465246735834974
1.2.2 Example Dataset 2

接下来的实验中的数据的分布图如下图所示,可以观察到,该数据集的正例子和负例子之间没有线性决策边界。不过,通过使用高斯核SVM,将能够学习到一个非线性决策边界,它在该数据集表现得相当好。

path="./data/ex6data2.mat"
X2,y2=load_mat(path)
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X2,y2,fig,ax)
plt.title("Example Dataset 2")
plt.show()


png

上面已经正确地实现了高斯核函数GaussKernel,接下来将继续在这个数据集上用高斯核训练SVM。下图绘制了具有高斯核的SVM所找到的决策边界,该决策边界能够正确地分离大多数正负例子,并且很自然地遵循了数据集的轮廓。

sigma=0.1
gamma=np.power(sigma,-2)/2
clf=svm.SVC(C=1,kernel='rbf',gamma=gamma)
model=clf.fit(X2, y2.flatten())
clf.score(X2, y2.flatten())
0.9895712630359212
dx1,dx2=decision_boundary(model,X2,diff=0.01) #找到决策边界的点
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X2, y2, fig, ax)
ax.scatter(dx1,dx2,s=5)
plt.title("SVM (Gaussian Kernel) Decision Boundary (Example Dataset 2)")
plt.show()


png

1.2.3 Example Dataset 3

在这部分实验中,将进了解关于如何使用具有高斯核的SVM。首先绘制样例数据集 3 3 3中的数据分布图:

def load_mat3(path):
    data=loadmat(path)
    X=data['X']
    y=data['y']
    Xval=data['Xval']
    yval=data['yval']
    return X,y,Xval,yval
path="./data/ex6data3.mat"
X3,y3,X3val,y3val=load_mat3(path)
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X3,y3,fig,ax)
plt.title("Example Dataset 3")
plt.show()


png

3 3 3个数据集给出了训练集和验证集,并且基于验证集的性能来为SVM模型找到最优超参数。对于 C , σ C,\sigma C,σ,有候选值 ( 0.01 , 0.03 , 0.1 , 0.3 , 1 , 3 , 10 , 30 ) (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30) (0.01,0.03,0.1,0.3,1,3,10,30)。尝试上面列出的 C C C σ \sigma σ 8 8 8个值中的每个,最终将训练和评估(在交叉验证集上)共 64 64 64个不同的模型。

C_values=[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]
sigma_values=[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]
best_score=0
best_params={'C':None,'sigma':None}

for C in C_values:
    for sigma in sigma_values:
        clf=svm.SVC(C=C,kernel='rbf',gamma=sigma)
        model=clf.fit(X3, y3.flatten())
        score=clf.score(X3val, y3val.flatten())
        if score>best_score:
            best_score=score
            best_params['C'],best_params['sigma']=C,sigma

best_score,best_params
(0.965, {'C': 3, 'sigma': 30})
clf=svm.SVC(C=best_params['C'],kernel='rbf',gamma=best_params['sigma'])
model=clf.fit(X3, y3.flatten())
clf.score(X3val, y3val.flatten())
0.965

根据上面的代码找到了最佳参数CsigmaSVM得到了下图的决策边界。

dx1,dx2=decision_boundary(model,X3,diff=0.005) #找到决策边界的点
fig,ax=plt.subplots(figsize=(8,6))
plot_data(X3, y3, fig, ax)
ax.scatter(dx1,dx2,s=5)
plt.title("SVM (Gaussian Kernel) Decision Boundary (Example Dataset 3)")
plt.show()


png

2 Spam Classification(垃圾邮件分类)

在本部分的实验中,将使用SVMs来构建垃圾邮件过滤器。

接下来将训练一个分类器来分类给定的电子邮件(x)是垃圾邮件(y=1)还是非垃圾邮件(y=0),需要将每个电子邮件转换为一个特征向量 x ∈ R n x \in R^n xRn

2.1 Preprocessing Emails(预处理电子邮件)

在开始执行机器学习任务之前,查看电子邮件的类型,下图显示了一个包含一个URL、电子邮件地址(在末尾)、数字和美元金额的电子邮件。虽然许多电子邮件包含类似实体(例如,数字、URL、电子邮件地址),但特定的实体(例如,特定的URL或特定的金额)在几乎每封电子邮件中都是不同的。因此,在处理电子邮件时经常使用的一种方法是"规范化"这些值,这样所有的url都处理成相同的,所有数字都处理成相同的。例如,用字符串httpaddr替换电子邮件中的URL,表示存在一个URL。这样做可以让垃圾邮件分类器根据是否存在URL来做出分类决定。这可以提高垃圾邮件分类器的性能,因为垃圾邮件发送者通常会将URL随机化,因此在新的垃圾邮件片段中再次看到特定出现过的URL的几率非常小。

with open("./data/emailSample1.txt","r") as f:
    email=f.read()
    print(email)
> Anyone knows how much it costs to host a web portal ?
>
Well, it depends on how many visitors you're expecting.
This can be anywhere from less than 10 bucks a month to a couple of $100. 
You should checkout http://www.rackspace.com/ or perhaps Amazon EC2 
if youre running something big..

To unsubscribe yourself from this mailing list, send an email to:
groupname-unsubscribe@egroups.com


所以接下来,需要对读取到的邮件作如下处理:

  • Lower-casing: 把整封邮件转化为小写
  • Stripping HTML: 移除所有HTML标签,只保留内容
  • Normalizing URLs: 将所有的URL替换为字符串httpaddr
  • Normalizing Email Addresses: 所有的地址替换为emailaddr
  • Normalizing Dollars: 所有dollar符号($)替换为dollar
  • Normalizing Numbers: 所有数字替换为number
  • Word Stemming(词干提取): 将所有单词还原为词源。例如discount, discounts, discounted and discounting都替换为discount
  • Removal of non-words: 移除所有非文字类型,所有的空格(tabs, newlines, spaces)调整为一个空格

将上面的邮件进行上述的预处理,结果如下图所示。虽然预处理留下了单词片段和非单词,但这种形式对于执行特征提取更容易处理。

import re
def processEmail(email):
    email=email.lower()
    email=re.sub('<[^<>]>',' ',email)
    email=re.sub('(http|https)://[^\s]*','httpaddr',email)
    email=re.sub('[^\s]+@[^\s]+','emailaddr',email)
    email=re.sub('[\$]+','dollar',email)
    email=re.sub('[\d]+','number',email)
    return email
processEmail(email)
"> anyone knows how much it costs to host a web portal ?\n>\nwell, it depends on how many visitors you're expecting.\nthis can be anywhere from less than number bucks a month to a couple of dollarnumber. \nyou should checkout httpaddr or perhaps amazon ecnumber \nif youre running something big..\n\nto unsubscribe yourself from this mailing list, send an email to:\nemailaddr\n\n"

接下来提取词干并且去除非字符内容。

import nltk, nltk.stem.porter # 英文分词算法
def email_TokenList(email):
    stemmer=nltk.stem.porter.PorterStemmer()
    email=processEmail(email)
    tokens=re.split('[ \@\$\/\#\.\-\:\&\*\+\=\[\]\?\!\(\)\{\}\,\'\"\>\_\<\;\%]',email)
    tokenList=[]
    for token in tokens:
        token=re.sub('[^a-zA-Z0-9]','',token)
        stemmed = stemmer.stem(token)#提取词根
        if(len(token)):
            tokenList.append(stemmed)
    return tokenList

在对电子邮件进行预处理后,得到电子邮件的单词列表(如下)。接下来选择在分类器中使用哪些词,以及需要忽略哪些词。

email_TokenList(email)
['anyon',
 'know',
 'how',
 'much',
 'it',
 'cost',
 'to',
 'host',
 'a',
 'web',
 'portal',
 'well',
 'it',
 'depend',
 'on',
 'how',
 'mani',
 'visitor',
 'you',
 're',
 'expect',
 'thi',
 'can',
 'be',
 'anywher',
 'from',
 'less',
 'than',
 'number',
 'buck',
 'a',
 'month',
 'to',
 'a',
 'coupl',
 'of',
 'dollarnumb',
 'you',
 'should',
 'checkout',
 'httpaddr',
 'or',
 'perhap',
 'amazon',
 'ecnumb',
 'if',
 'your',
 'run',
 'someth',
 'big',
 'to',
 'unsubscrib',
 'yourself',
 'from',
 'thi',
 'mail',
 'list',
 'send',
 'an',
 'email',
 'to',
 'emailaddr']
2.1.1 Vocabulary List

在本节实验中,只选择最经常出现的单词作为单词集(词汇表)。由于在训练集中很少出现的单词一般也只出现在少数电子邮件中,它们可能会导致模型过拟合。词汇表vocab.txt里面存储了在实际中经常使用的单词,共 1899 1899 1899个。(在实践中,词汇表大约有1万到5万字)。在词汇表中,将预处理电子邮件中的每个单词映射到一个单词索引列表中,其中包含词汇和单词索引。

完成processEmail函数,传入字符串str(处理过的电子邮件中的单个单词),然后在词汇表中查找该单词,看它是否存在于词汇表列表中,如果存在,将单词的索引添加到单词索引变量中;如果不存在,可以跳过这个词。

def processEmail_index(email,vocab):
    token=email_TokenList(email)
    index=[i for i in range(len(vocab)) if vocab[i] in token]
    return index
vocab = pd.read_table('./data/vocab.txt',names=['words'])
vocab=vocab.values
processEmail_index(email, vocab)
[70,
 85,
 88,
 161,
 180,
 237,
 369,
 374,
 430,
 478,
 529,
 530,
 591,
 687,
 789,
 793,
 798,
 809,
 882,
 915,
 944,
 960,
 991,
 1001,
 1061,
 1076,
 1119,
 1161,
 1170,
 1181,
 1236,
 1363,
 1439,
 1476,
 1509,
 1546,
 1662,
 1675,
 1698,
 1757,
 1821,
 1830,
 1892,
 1894,
 1895]

2.2 Extracting Features from Emails(从电子邮件中提取特征)

接下来实现功能提取,将每个电子邮件转换为一个 R n R^n Rn的向量。电子邮件的特性 x i ∈ { 0 , 1 } x_i\in \lbrace0,1\rbrace xi{0,1}表示第 i i i个单词是否出现在电子邮件中,如果第 i i i个单词在电子邮件中,那么 x i = 1 x_i=1 xi=1;否则 x i = 0 x_i=0 xi=0。因此,一个电子邮件中的特征将看起来就像:

image-20220327224657366

编写函数emailFeatures完成上述的功能,运行代码,可以看到特征向量的长度为 1899 1899 1899并且有 45 45 45个非零项。

def emailFeatures(email):
    df = pd.read_table('./data/vocab.txt',names=['words'])
    vocab=df.values
    vector=np.zeros(len(vocab))
    vocal_index=processEmail_index(email,vocab)
    for i in vocal_index:
        vector[i]=1
    return vector
vector=emailFeatures(email)
print('vector had length {} and {} non-zero entries'.format(len(vector), int(vector.sum())))
vector had length 1899 and 45 non-zero entries

2.3 Training SVM for Spam Classification(垃圾邮件分类-SVM)

spamTrain.mat包含 4000 4000 4000个垃圾邮件和非垃圾邮件的训练数据,spamTest.mat包含 1000 1000 1000个测试数据。每个原始电子邮件使用processEmail函数和emailFeatures函数处理,并转换为一个向量 x ( i ) ∈ R 1899 x^{(i)}\in R^{1899} x(i)R1899

加载数据集之后,训练SVM进行分类:垃圾邮件 y = 1 y=1 y=1和非垃圾邮件(y=0)。训练完成,分类器得到的训练准确率约为 99.8 % 99.8\% 99.8%,测试准确率约为 98.5 % 98.5\% 98.5%

path="./data/spamTrain.mat"
X,y=load_mat(path)
path="./data/spamTest.mat"
data=loadmat(path)
Xtest,ytest=data["Xtest"],data["ytest"]
X.shape,y.shape,Xtest.shape,ytest.shape
((4000, 1899), (4000, 1), (1000, 1899), (1000, 1))

每个文档已经转换为一个向量,其中 1899 1899 1899对应于词汇表中的 1899 1899 1899个单词。 它们的值为二进制,表示文档中是否存在单词。

clf=svm.SVC(C=0.1,kernel='linear')
clf.fit(X,y)
clf.score(X,y)
D:\Python\lib\site-packages\sklearn\utils\validation.py:63: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  return f(*args, **kwargs)





0.99825
clf.score(Xtest,ytest)
0.989

2.4 Top Predictors for Spam

为了更好地理解垃圾邮件分类器是如何工作的,可以检查参数,看看分类器认为哪些词最能预测到垃圾邮件。接下来在分类器中找到最大的参数(正数),并显示相应的单词。因此,如果电子邮件包含"保证"、“删除”、"美元"和"价格"等词,它很可能被归类为垃圾邮件。

kw=np.eye(1899)
spam_val=pd.DataFrame({'index':range(1899)})
spam_val['is_spam']=clf.decision_function(kw)
spam_val['is_spam'].describe()
count    1899.000000
mean        0.184175
std         0.086875
min        -0.418804
25%         0.141325
50%         0.185384
75%         0.225760
max         0.686941
Name: is_spam, dtype: float64
decision=spam_val[spam_val['is_spam']>0.4]
decision
indexis_spam
49490.423638
1551550.531392
1731730.415344
2972970.652244
3903900.419589
4764760.509960
4784780.415967
5545540.413357
6986980.434625
7387380.569949
7917910.432732
9659650.439794
106610660.443626
108810880.440269
112311230.401540
119011900.686941
126312630.447497
129812980.453625
137313730.411073
139713970.609197
146014600.419283
179517950.554038
180818080.418275
185118510.456052
vocab = pd.read_csv('./data/vocab.txt',names=['index','words'],sep='\t')
vocab.head()
indexwords
01aa
12ab
23abil
34abl
45about
spam_voc=vocab.loc[list(decision['index'])]
spam_voc
indexwords
4950al
155156basenumb
173174below
297298click
390391da
476477dollar
478479dollarnumb
554555enumb
698699ga
738739guarante
791792hour
965966lo
10661067most
10881089nbsp
11231124numberb
11901191our
12631264pleas
12981299price
13731374recent
13971398remov
14601461se
17951796visit
18081809want
18511852will
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Phoenix_ZengHao

创作不易,能否打赏一瓶饮料?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值