文章目录
专业词汇
Large Margin
超平面 (hyperplane)
鲁棒性(Robustness)
支持向量机(Support Vector Machine)
"间隔" (margin)
最大|间隔 (maximum margin)
个凸二次规划(convex quadratic programming) 问题
"对偶问题" (dual problem)
KKT (Karush-Kuhn-Tucker)
SMO (Sequential Minimal Optimization)
"核函数" (kernel function)
"核技巧" (kernel trick).
"支持向量展式"(support vector expansion)
"再生核希尔伯特空 间" (Reproducing Kernel Hilbert Space,简称 RKHS)
"软间隔" (soft margin)
"硬间隔" (hard margin
内容概括
经典二分类问题,决策边界泛化能力大(鲁棒性)
物理含义
选出距离雷区最远的分类超平面(雷区:分类边界上的点)
该超平面对训练样本局部扰动的容忍性最好,鲁棒性好
数学原理推导
下面推到过程中可能会有在x的位置写成x的函数的情况,全部当x就好,具体用途见后面的板块
由法向量w和位置b决定超平面方程:
点x到超平面的距离
支持向量机间隔
当面对确定的样本集时,SVM间隔只与超平面的法向量有关
对于确定的样本集,法向量w的转置确定以后---->雷区边界确定------>超平面确定(两雷区中间线)
雷区边界方程: wx+b=±c (因为超平面定义在两雷区边界中点)
该超平面的方程:wx+b=0 (w有转置符号)
c是一个确定的数值,我们为了推导方便,令c=1
支持向量
雷区边界上的点为–支持向量–,支持向量最少有两个
是否为支持向量:在确定w下,在用拉格朗日乘子法的过程中拉格朗日乘子是否为0可以来反应某样本点是否为支持向量
目标函数
点超平面的距离L为: -------------以