P1162填涂颜色——题解

题目描述

由数字0组成的方阵中,有一任意形状闭合圈,闭合圈由数字1构成,围圈时只走上下左右4个方向。现要求把闭合圈内的所有空间都填写成2.例如:6×6的方阵(n=6),涂色前和涂色后的方阵如下:

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

输入格式

每组测试数据第一行一个整数 1≤n≤30

接下来n行,由0和1组成的n×n的方阵。

方阵内只有一个闭合圈,圈内至少有一个0。

输出格式

已经填好数字22的完整方阵。

输入输出样例

输入 #1复制

6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

输出 #1复制

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

说明/提示

1≤n≤30

分析:

很显然,这种宫格填啊,走啊,要么就是动态规划,要么就是搜索,我们看看题目

em,很显然是搜索(不要问我为什么,动态规划怎么做?最主要是标签上写了搜索(逃))。

em,再来看看数据范围,n<=30,额,勉强可以,试一试吧!

于是一个热血青年拿起键盘,迅速地打下了输入和头文件,随后,趴着睡着了?!

热血青年:“不会做啊,什么鬼,怎么搜?”(别急,正课开始了,认真看)!


6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

这是样例!相信各位热血青年都看懂题目了

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

这是输出!

我们来思考这个问题:

难道真的要把1这个包围圈全部搜出来,然后再把里面的0全部变成2?

不说你不会做,光是这个复杂度把你看懵逼!

所以

我们把这类问题的求解方法叫做染色法!

具体怎么染?你看完后会惊叹一声(**


首先

我们思考一会,刚刚试了一下从里面染不行,难道不能染外面的吗?

首先,1组成的是包围圈,所以,你从外面搜,加个条件,函数是搜不进来的!懂了吗!

如果懂了就可以去尝试写一下,如果还不懂请继续看!

首先

  1. 我们先把整个棋盘设为2

  2. 2 2 2 2 2 2
    2 2 2 2 2 2
    2 2 2 2 2 2
    2 2 2 2 2 2
    2 2 2 2 2 2
    2 2 2 2 2 2
    

    3.我们再输入,把1的地方变成1(其他不用动)(眼尖的朋友已经发现已经填好了)

2 2 2 2 2 2
2 2 1 1 1 1
2 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

4.再搜索,吧外面的变成0,输出

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

热血青年感叹道:“没了!米奇妙妙屋

完整代码(为了方便看,我把注释删掉了,不懂得去上面看):

#include<bits/stdc++.h>
using namespace std;
#define maxn 35
int a[maxn][maxn],n;
int dx[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
void dfc(int x,int y){
	a[x][y]=0;
	for(int i=0;i<4;i++){
		int ux = x+dx[i][0],uy = y+dx[i][1];
		if(ux>=0 and ux<=n+1 and uy>=0 and uy<=n+1 and a[ux][uy]==2){
			dfc(ux,uy);
		}
	}
}
int main(){
	for(int i=0;i<35;i++)for(int j=0;j<35;j++)a[i][j]=2;
	cin>>n;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			int tmd;cin>>tmd;
			if(tmd==1)a[i][j]=1;
		}
	}
	dfc(0,0);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			cout<<a[i][j]<<" ";
		}
		if(i!=n)cout<<endl;
	}
	return 0;
}

本文作者:Phrvth

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值