题目描述
由数字0组成的方阵中,有一任意形状闭合圈,闭合圈由数字1构成,围圈时只走上下左右4个方向。现要求把闭合圈内的所有空间都填写成2.例如:6×6的方阵(n=6),涂色前和涂色后的方阵如下:
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1
输入格式
每组测试数据第一行一个整数 1≤n≤30
接下来n行,由0和1组成的n×n的方阵。
方阵内只有一个闭合圈,圈内至少有一个0。
输出格式
已经填好数字22的完整方阵。
输入输出样例
输入 #1复制
6 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1
输出 #1复制
0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1
说明/提示
1≤n≤30
分析:
很显然,这种宫格填啊,走啊,要么就是动态规划,要么就是搜索,我们看看题目
em,很显然是搜索(不要问我为什么,动态规划怎么做?最主要是标签上写了搜索(逃))。
em,再来看看数据范围,n<=30,额,勉强可以,试一试吧!
于是一个热血青年拿起键盘,迅速地打下了输入和头文件,随后,趴着睡着了?!
热血青年:“不会做啊,什么鬼,怎么搜?”(别急,正课开始了,认真看)!
6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
这是样例!相信各位热血青年都看懂题目了
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1
这是输出!
我们来思考这个问题:
难道真的要把1这个包围圈全部搜出来,然后再把里面的0全部变成2?
不说你不会做,光是这个复杂度把你看懵逼!
所以
我们把这类问题的求解方法叫做染色法!
具体怎么染?你看完后会惊叹一声(**)
首先
我们思考一会,刚刚试了一下从里面染不行,难道不能染外面的吗?
首先,1组成的是包围圈,所以,你从外面搜,加个条件,函数是搜不进来的!懂了吗!
如果懂了就可以去尝试写一下,如果还不懂请继续看!
首先
-
我们先把整个棋盘设为2
-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3.我们再输入,把1的地方变成1(其他不用动)(眼尖的朋友已经发现已经填好了)
2 2 2 2 2 2
2 2 1 1 1 1
2 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1
4.再搜索,吧外面的变成0,输出
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1
热血青年感叹道:“没了!米奇妙妙屋”
完整代码(为了方便看,我把注释删掉了,不懂得去上面看):
#include<bits/stdc++.h>
using namespace std;
#define maxn 35
int a[maxn][maxn],n;
int dx[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
void dfc(int x,int y){
a[x][y]=0;
for(int i=0;i<4;i++){
int ux = x+dx[i][0],uy = y+dx[i][1];
if(ux>=0 and ux<=n+1 and uy>=0 and uy<=n+1 and a[ux][uy]==2){
dfc(ux,uy);
}
}
}
int main(){
for(int i=0;i<35;i++)for(int j=0;j<35;j++)a[i][j]=2;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int tmd;cin>>tmd;
if(tmd==1)a[i][j]=1;
}
}
dfc(0,0);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cout<<a[i][j]<<" ";
}
if(i!=n)cout<<endl;
}
return 0;
}