python多光谱遥感数据处理、图像分类、定量评估及机器学习方法应用

普通数码相机记录了红、绿、蓝三种波长的光,多光谱成像技术除了记录这三种波长光之外,还可以记录其他波长(例如:近红外、热红外等)光的信息。与昂贵、不易获取的高光谱、高空间分辨率卫星数据相比,中等分辨率的多光谱卫星数据可以免费下载获取,例如:landsat数据、哨兵-2号数据、Aster数据、Modis数据等,这些海量的长时间对地观测数据,蕴藏着丰富的信息。随着无人机行业的快速发展,无人机作为一种低成本的平台,具有时效高、灵活性强、空间分辨率优等特点,可以作为卫星多光谱数据的有效补充,也发挥了越来越重要的作用。

基于卫星或无人机平台的多光谱数据在地质、土壤调查和农业等应用领域发挥了重要作用,在地质应用方面,综合Aster的短波红外波段、landsat热红外波段等多光谱数据,可以通过不同的多光谱数据组合,协同用于矿物信息有效提取。此外,随着机器学习方法的深入应用,多光谱数据在矿物填图、矿山环境监测等方面都发挥了重要作用,并显示出巨大的应用潜力。在农业应用领域,无人机、卫星多光谱遥感技术已成为作物长势监测的重要技术手段。通过最佳植被指数和最优的数据采集时期,构建相关地区的水稻、小麦等作物估产模型,可以为不同尺度的作物估产和长势评估提供重要技术支持。针对土壤调查研究,以卫星、无人机多光谱为主要数据源,结合多种机器学习方法,可以进行土壤有机质、盐度等理化参数评估。

基于python多光谱遥感数据处理、图像分类、定量评估及机器学习方法应用

第一章、基础理论和数据下载、处理

1、多光谱遥感基础理论和主要数据源

多光谱遥感基本概念;介绍光谱、多光谱、RGB真彩色、彩色图像、反射率、DN值、辐射亮度等基本理论和概念。多光谱遥感的主要卫星数据源介绍及下载方法(哨兵、Landsat、Aster、Modis等)。典型地物光谱特征,矿物、土壤、植被光谱诊断特征及理论基础。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值