ENVI+Python助力多光谱遥感数据处理;多光谱数据下载方法;矿物识别、农作物长势评估、土壤质量评价等案例

目录

第一章 基础理论和数据下载、处理

第二章 多光谱遥感数据处理Python环境搭建和开发基础

第三章 Python机器学习、深度学习方法与实现

第四章 基于python的多光谱遥感数据清理与信息提取技术

第五章 典型案例

更多应用


从基础理论、技术方法、应用实践三方面对多光谱遥感技术进行讲解。

基础理论篇,介绍多光谱的基本概念和理论,介绍了Landsat数据、哨兵-2号数据、Aster数据、Modis数据等多光谱数据说明和下载方法。

技术方法篇,介绍基于ENVI的上述多光谱数据处理方法,包括数据辐射定标、大气校正等预处理方法,波段组合、光谱指数计算、图像监督、非监督分类等方法。针对多光谱数据处理,除了ENVI自带和拓展的功能之外,课程提供一套基于Python开发方法,结合目前主流的机器学习和深度学习方法,介绍多光谱遥感数据的整理、图像分类、多时间序列处理、多传感器协同等方法,基于python实现多光谱数据处理和分析过程。

实践篇,通过矿物识别,农作物长势评估、土壤质量评价等案例,提供可借鉴的多光谱应用领域的技术服务方案,结合ENVI软件、Python开发、科学数据可视化、数据处理与机器学习、图像处理等功能模块,对学习到的理论和方法进行高效反馈。

通过对光谱、图像等数据处理,掌握岩矿、土壤、植被等地物的光谱特征和图像特征,结合ENVI等专业软件、Python开发工具平台,开展多光谱数据预处理、图像分类、定量评估、机器学习等方法的实践和开发,提高运用多光谱遥感技术解决实际问题能力。

第一章 基础理论和数据下载、处理

1.多光谱遥感基础理论和主要数据源

多光谱遥感基本概念; 介绍光谱、多光谱、RGB真彩色、彩色图像、反射率、DN值、辐射亮度等基本理论和概念。多光谱遥感的主要卫星数据源介绍及下载方法(哨兵、Landsat、Aster、Modis等)。典型地物光谱特征,矿物、土壤、植被光谱诊断特征及理论基础。 

电磁波谱   Landsat、哨兵-2 数据下载网站

2.多光谱数据预处理方法

多光谱遥感的数据处理方法,数据辐射校正、正射校正、地形校正、数据合成、数据镶嵌,基于SNAP软件的哨兵数据预处理方法;基于ENVI软件的多光谱数据预处理、波段组合、光谱指数计算、图像分类等方法。

SNAP软件下载安装使用   ENVI软件处理Landsat数据

第二章 多光谱遥感数据处理Python环境搭建和开发基础

1.Python介绍及安装、常用功能

Python开发语言介绍;Pycharm、Anaconda软件下载、安装和常用功能介绍;Python 基础语法和开发实践。Python多光谱图像处理虚拟环境的构建与第三方包安装。

Python软件下载安装使用   conda 虚拟环境构建

2.Python中的空间数据介绍和处理

使用geopandas 读取矢量数据 sh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值