PAT (Advanced Level) Practice

1003Emergency

最短路径问题——Dijkstra算法
选出最近的点,把该点加入集合
计算从该点出发到其他所有点的距离(排除集合中的点)
更新距离,救援队数量和路径数量,⚠️注意dis[now] + mmap[now][j] == dis[j]的情况

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f

int n, m, s, e;
int team[1000];
int mmap[1000][1000];
int dis[1000], tol[1000], pathnum[1000], set[1000] = {0};
//dis表示原点到某点的距离,set表示某点是否加入集合,tol表示到某点的救援队数量,pathnum表示到某点的路径数量

void dijstra(){
    for(int i=0; i<n; i++){
        dis[i] = inf;        //初始所有距离为无穷大
    }
    dis[s] = 0;  //原点距离为0
    tol[s] = team[s];  //原点的救援队数量为输入的数team[s]
    pathnum[s] = 1;  //初始路径为1

    for(int i=0; i<n; i++){  //遍历所有点,加入集合
        int mmin = inf;
        int now;  //now表示当前点,也就是最近的点
        for(int j=0; j<n; j++){
            if(dis[j] < mmin && set[j] == 0) {
                mmin = dis[j];
                now = j;
            }
        }
        set[now] = 1;  //把最短的点加入集合中
        for(int j=0; j<n; j++){
            if(set[j] == 0){
                if(dis[now] + mmap[now][j] < dis[j]){  //更新距离,救援队数量,路径数量
                    dis[j] = dis[now] + mmap[now][j];
                    tol[j] = tol[now] + team[j];
                    pathnum[j] = pathnum[now];
                }
                else if(dis[now] + mmap[now][j] == dis[j]){
                    pathnum[j] += pathnum[now];
                    if(tol[j] < tol[now] + team[j])
                        tol[j] = tol[now] + team[j];
                }
            }

        }
    }

}

int main(){
    cin >> n >> m >> s >> e;
    for(int i=0; i<n; i++)
        cin >> team[i];
    memset(mmap,inf,sizeof(mmap));  //把map置为无穷大,表示各点之间断路
    for(int i=0; i<m; i++){
        int a, b;
        cin >> a >> b;
        cin >> mmap[a][b];
        mmap[b][a] = mmap[a][b];
    }
    dijstra();
    cout << pathnum[e] << " " << tol[e] << endl;
}

1004Counting Leaves

dfs算法,是叶子结点结束,非叶子结点继续dfs

#include<bits/stdc++.h>
using namespace std;

int n, m;
int maxlevel = 0;
vector<int> node[1000];
int level[1000] = {0};
void dfs(int a, int l){
    if(node[a].size() == 0){   //若该节点为叶子节点,则该层+1,结束
        level[l] += 1;
        return;
    }
    for(int i=0; i<node[a].size(); i++){
        if(maxlevel < l+1)   //更新最大层数,最后要知道有几层才能输出每层的叶子结点数
            maxlevel = l + 1;
        dfs(node[a][i], l+1);
    }
}
int main() {
    cin >> n >> m;
    for(int i=0; i<m; i++){
        int root, number, ch;
        cin >> root >> number;
        for(int j=0; j<number; j++){
            cin >> ch;
            node[root].push_back(ch);
        }
    }
    dfs(1, 0);
    for(int i=0; i<maxlevel; i++)
        cout << level[i] << " ";
    cout << level[maxlevel] << endl;
}

bfs

#include<bits/stdc++.h>
using namespace std;

int n, m;
int maxlevel = 0;
vector<int> node[1000];
int level[1000], num[1000];  //level某点的层数,num某层的叶子节点数

void bfs(){
    queue<int> leaf;
    leaf.push(1);
    level[1] = 0;
    while(!leaf.empty()){
        int k = leaf.front();
        leaf.pop();
        maxlevel = max(maxlevel, level[k]);
        for(int i=0; i<node[k].size(); i++) {
            leaf.push(node[k][i]);
            level[node[k][i]] = level[k] + 1;
        }
        if(node[k].size() == 0)
            num[level[k]] += 1;
    }
}

int main() {
    cin >> n >> m;
    for(int i=0; i<m; i++){
        int root, number, ch;
        cin >> root >> number;
        for(int j=0; j<number; j++){
            cin >> ch;
            node[root].push_back(ch);
        }
    }
    bfs();
    for(int i=0; i<maxlevel; i++)
        cout << num[i] << " ";
    cout << num[maxlevel] << endl;
}

1007 Maximum Subsequence Sum

求最大连续子序列和及头尾位置
⚠️注意题目要求当所有数字都为负数时,输出0以及头尾数字即可

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f

int main(){
    int n, flag = 0;
    cin >> n;
    int a[10001];
    for(int i=0; i<n; i++) {
        cin >> a[i];
        if(a[i] < 0)  //判断是否所有数字都为负数
            flag++;
    }

    int first = 0, sum = -1;
    int temp = 0;
    int l, r;
    for(int i=0; i<n; i++){
        temp += a[i];
        if(temp < 0){  //若temp加上a[i]<0,说明对后面的序列没价值了,temp重置为0,头移到下一个
            temp = 0;
            first = i + 1;
        }
        else if(temp > sum){
            sum = temp;
            l = first;
            r = i;
        }
    }
    if(sum < 0)
        sum = 0;
    if(flag == n)
        cout << "0 " << a[0] << " " << a[n-1] << endl;
    else
        cout << sum << " " << a[l] << " " << a[r] << endl;
}

1010 Radix

最大的坑就是在数据范围,采用二分法锁定进制范围
第一个测试点卡的就是这条long long high = max(s, low);因为有可能一个数很小,而另一个数很大很大,用这个可以直接卡死范围

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f


//将radix进制的数b转化为long long型
long long change(string b, long long radix){
    long long s = 0, k = 0;
    for(int i=b.length()-1; i>=0; i--){
        if(b[i] >= '0' && b[i] <= '9')
            s += pow(radix, k++) * (b[i] - '0');
        else
            s += pow(radix, k++) * (b[i] - 87);
    }
    return s;
}

//找出转为10进制等于s的n的进制
long long find_index(string n, long long s){
    char mmax = *max_element(n.begin(), n.end());
    long long low = (isdigit(mmax) ? mmax - '0' : mmax - 87) + 1; //最小进制为最大的数字加1
    long long high = max(s, low);
    while(low <= high){
        long long mid = (high + low) / 2;
        long long t = change(n, mid);
        if(t < 0 || t > s)
            high = mid - 1;
        else if(t == s)
            return mid;
        else
            low = mid + 1;
    }
    return -1;
}


int main(){
    string a, b;
    long long tag, radix;
    cin >> a >> b >> tag >> radix;
    long long s;
    s = tag == 1 ? find_index(b, change(a, radix)) : find_index(a, change(b, radix));
    if(s != -1)
        cout << s << endl;
    else
        cout << "Impossible" << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值