在 R 语言中如何计算项式置信区间
项式置信区间是统计学中常用的一种方法,用于估计总体参数的范围。在 R 语言中,我们可以使用不同的函数来计算项式置信区间,具体取决于数据的类型和分布。下面将介绍在 R 中计算项式置信区间的常见方法。
- 单样本均值的项式置信区间
当我们有一个样本的数据,并且想要估计总体均值的范围时,可以使用 t 分布来计算项式置信区间。以下是计算单样本均值的项式置信区间的 R 代码示例:
# 创建一个样本数据
data <- c(34, 28, 35, 29, 32, 31, 30, 33, 27, 30)
# 计算样本均值和标准误差
mean_val <- mean(data)
se <- sd(data) / sqrt(length(data))
# 设置置信水平和自由度
confidence_level <- 0.95
df <- length(data) - 1
# 使用 t 分布计算置信区间
t_interval <- qt(c((1 - confidence_level) / 2, 1 - (1 - confidence_level) / 2), df)
ci <- mean_val + t_interval * se
# 打印置信区间
cat("项式置信区间:[", ci[1], ", ", ci[2], "]\n")
在上面的代码中,我们首