R语言的置信区间以及中心极限定理


学习目标

我们所采用的学习内容来自B站的Lizongzhang老师的R语言的学习分享
今天学习的主要内容是关于
置信水平的理解
总体均值的区间估计

学习内容

下面是学习的主要内容
首先第一部分是对t.test函数的应用

总体均值的区间估计

首先先对总体均值的区间估计有一定的了解
在推断总体参数时,还需要根据统计量的抽样分布特征,估计出总体参数的一个区间范围,并同时给出总体参数落在这一区间范围的可能性大小的判断。 常用方法有矩估计法和最大似然估计法
图像上的简单理解,就是给出一条数轴,我对其落在某一点的附近的可能性有多大
μ \mu μ为我们所求的中心点所在位置,若大部分的样本待在 μ + 3 σ \mu +3\sigma μ+3σ的范围内,那么就表明大部分的样本点就在 μ \mu μ这个点的附近,然后就可以根据我们题目的需要对其进行判断
在这里插入图片描述

#总体均值的区间估计
x<-rnorm(10,20,2)
#number of observation(观测次数):10
#mean(均值):20
#标准差:2
t.test(x)
n<-10
margin_of_error<-qt(0.975,9)*sd(x)/sqrt(n)
ll<-mean(x)-margin_of_error#lower limit最低下限
up<-mean(x)+margin_of_error#最高上限
ci<-c(ll,up)
ci
t.test(x,conf=0.90)#进行区间估计,90%可以根据需要进行更改

首先常看t.test(x)的运行结果(默认是 95 % 95\% 95%)

> t.test(x)

	One Sample t-test
	#单样本检验
data:  x
t = 40.466, df = 9, p-value = 1.711e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 17.85042 19.96434
sample estimates:
mean of x 
 18.90738

c i ci ci所表示的值如下

> ci
[1] 18.80898 21.54841

接下来看在 90 % 90\% 90%的区间估计

> t.test(x,conf=0.90)

   One Sample t-test

data:  x
t = 33.326, df = 9, p-value = 9.715e-11
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
19.06876 21.28862
sample estimates:
mean of x 
20.17869 

置信水平–基于R的模拟

再对置信水平进行一个简单的介绍
首先要提出一个假设的检验,令假设检验的命题为是否 ω = ω 0 \omega =\omega _0 ω=ω0进行讨论,下面是具体步骤

  • 制定原假设: H 0 : ω = ω 0 H_0:\omega =\omega _0 H0:ω=ω0和备择假设 H 1 H_1 H1,这里在选择检验方法的时候有一个小方法帮助大家选择:
    –如果是 H 1 : ω > ω 0 H_1:\omega >\omega _0 H1:ω>ω0,那么选择的就是右侧检验
    –如果 H 1 : ω < ω 0 H_1:\omega <\omega _0 H1:ω<ω0,那么选择的检验就是左侧检验
    –如果 H 1 : ω ≠ ω 0 H_1:\omega \ne \omega _0 H1:ω=ω0,那么假设检验就是选择使用双侧检验
  • 在原假设 H 0 H_0 H0成立的情况下构造分布,可以有 x 2 x^2 x2分布,正态分布, t t t分布等
  • 画出该分布下的概率密度图,常见使用到的函数是 f ( x ) = 1 2 π σ e − ( x − μ ) 2 / 2 σ 2 f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} f(x)=2π σ1e(xμ)2/2σ2
  • 制定一个置信区间 β \beta β(即认为 H 0 H_0 H0成立的概率),一般情况下是取 β = 90 % \beta =90\% β=90%以上的(一般是 β = 90 % \beta =90\% β=90%, β = 95 % \beta =95\% β=95%, β = 99 % \beta =99\% β=99%),在这里我们取 β = 95 % \beta =95\% β=95%
  • 可以根据不同的检测方法画出对应的图像,这里简单绘制一下双侧检验对应的图像,可能不是很好看在这里插入图片描述
  • 得出结果:若给出的结果是若给出的值落在了拒绝域上,那就说明在 95 % 95\% 95%的置信水平上拒绝原假设(可以理解为我们我们有 β = 95 % \beta =95\% β=95%的自信可以拒绝原假设,置信区间只是对自信这样一个概念写得更加富有数学逻辑),反之,在在 95 % 95\% 95%的置信水平上,接受原假设
  • 下面使用R语言进行实现
#置信水平
x<-rnorm(10,20,2)
#number of observation(观测次数):10
#mean(均值):20
#标准差:2
t.test(x)#单边检验
str(t.test(x))#提取结构string

t.test(x)$conf.int[1]#在R语言当中$表示提取上下限
t.test(x)$conf.int[2]
ci<-array(0,dim=c(1000,2))
#定义初始值,有1000行,有两列
for(i in 1:1000){
  x<-rnorm(10,20,2)
  #生成样本数据
  ci[i,]<-c(t.test(x)$conf.int[1],t.test(x)$conf.int[2])
}
#head(ci)#查看前面的几个值的信息
mean(1*((ci[,1]<20)&(ci[,2]>20)))#逻辑运算的判断
#查看是否逼近95%

中心极限定理

首先先对中心极限定理做一个简单的解释
现象由大量相互独立的因素影响
大量独立同分布的变量和的极限分布是正态分布
定理: x 1 . . . x n . . . x_1...x_n... x1...xn...独立同分布, E x i = μ Ex_i=\mu Exi=μ D x i = σ 2 Dx_i=\sigma^2 Dxi=σ2 其中 0 < σ < + ∞ 0<\sigma <+\infty 0<σ<+
lim ⁡ n → + ∞ P ( ∑ i = 1 n X i − n μ n σ ⩽ x ) = ∫ − ∞ x 1 2 π e − t 2 2 d t \lim _{n \rightarrow+\infty} P\left(\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \leqslant x\right)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t n+limP(n σi=1nXinμx)=x2π 1e2t2dt
Y = ∑ i = 1 n x i Y=\sum_{i=1}^{n} x_{i} Y=i=1nxi E Y = E ∑ i = 1 n x i = n μ E Y=E \sum_{i=1}^{n} x_{i}=n \mu EY=Ei=1nxi=nμ
可以得到 D Y = D ( ∑ i = 1 n x i ) = ∑ i = 1 n D x i = n σ 2 D Y=D\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} D x_{i}=n \sigma^{2} DY=D(i=1nxi)=i=1nDxi=nσ2
可以看出其分布的情况如下
N ( n μ , n σ 2 ) N\left(n\mu, n \sigma^{2}\right) N(nμ,nσ2)

#Central limit Theorem
#中心极限定理
#关注样本均值的分布状态
#(dim表示的是维度)
sample_mean<-array(0,dim=5000)
for(i in 1:5000)#rchisq表示k方分布随机数生成器
{
  x<-rchisq(30,5)
  sample_mean[i]<-mean(x)
}
hist(sample_mean,prob=T,ylim=c(0,1))
#prob=T表示纵轴概率分布,ylim是y轴取值区间
lines(density(sample_mean),col=2,lwd=3)
#增加一条概率密度曲线

画出对应的概率分布和增加概率分布密度曲线之后的图像
在这里插入图片描述

#总体服从自由度为5的卡方分布
par(mfrow=c(2,2),mai=c(0.6,0.6,0.2,0.1),cex=0.6)
#进行图像的分布
sample_size<-c(1,4,36,100)
for(j in 1:4){
  sample_mean<-array(0,dim=5000)
  for(i in 1:5000){
    x<-rchisq(sample_size[j],5)
    #sample_size[j]表示在sample_size当中
    #进行取相应位置的操作
    sample_mean[i]<-mean(x)
  }
  hist(sample_mean,freq=F,
       xlim=c(0,15),
       ylim=c(0,1.4),
       main=paste("sample size=",sample_size[j]))
  lines(density(sample_mean),col=2,lwd=2)
}

画出自由度为5,样本容量分别为1,4,36,100时的图像
在这里插入图片描述

内容小结

这一部分的内容由于本人在概率论里没有进行系统的学习,所以有讲得不明白的地方还希望大家可以理解,也希望大家可以再多看一些不同的内容

  • 6
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值