使用cox.zph函数检验Cox回归模型是否满足等比例风险假设(R语言)

90 篇文章 ¥59.90 ¥99.00
本文介绍了如何利用R语言的cox.zph函数检验Cox回归模型是否满足等比例风险假设。通过计算Schoenfeld残差并分析其与时间的关系,我们可以评估模型的假设是否成立,确保生存分析的准确性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用cox.zph函数检验Cox回归模型是否满足等比例风险假设(R语言)

Cox回归模型是一种常用的生存分析方法,用于分析时间相关数据和生存数据。然而,在应用Cox回归模型时,一个关键的假设是等比例风险假设,即各个组之间的风险比应保持不变。为了验证这一假设是否成立,可以使用R语言中的cox.zph函数进行检验。

cox.zph函数是survival包中的一个函数,用于执行Cox回归模型的比例危险性检验。该函数会计算每个预测变量的Schoenfeld残差,并通过对残差与时间的关系进行检验,来评估风险比的变化情况。下面是使用cox.zph函数检验Cox回归模型的示例代码:

# 导入所需的包
library(survival)

# 假设我们已经拟合了Cox回归模型,得到了模型对象cox_model

# 使用cox.zph函数进行比例危险性检验
zph_result <- cox.zph(cox_model)

# 查看检验结果
print(zph_result)

在上述代码中,我们首先导入了survival包,以便使用其中的函数。然后,我们假设已经拟合了一个Cox回归模型,并将模型对象存储在cox_model中。接下来,我们使用cox.zph函数对模型进行比例危险性检验,并将结果存储在zph_result<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值