查看模型在每个交叉验证的每一折fold上的AUC指标(R语言实现)

101 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言查看模型在10折交叉验证中每一折的AUC指标。通过计算每个fold的AUC,可以评估模型性能的一致性和是否存在过拟合。示例代码中,首先加载了相关包,然后创建数据集并应用逻辑回归模型,接着进行交叉验证,计算并打印每个fold的AUC值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

查看模型在每个交叉验证的每一折fold上的AUC指标(R语言实现)

在机器学习中,我们经常使用交叉验证来评估模型的性能。除了评估整体性能外,了解模型在每个交叉验证的每一折中的表现也是很有意义的。本文将介绍如何使用R语言来查看模型在每个交叉验证的每一折fold上的AUC指标。

假设我们已经利用训练数据构建了一个分类模型,并使用10折交叉验证对该模型进行评估。下面是一个展示交叉验证过程的例子:

library(pROC)

# 创建一个包含输入特征和目标变量的数据集
data <- iris
data$Species <- ifelse(data$Species == "setosa", 1, 0)

# 定义模型函数(这里使用逻辑回归)
model <- function(train, test) {
  glm(Species ~ ., data = train, family = "binomial")
}

# 进行10折交叉验证
set.seed(123)
folds <- createFolds(data$Species, k = 10)

auc_results <- vector("numeric", length(folds))

for (i in 1:length(folds)) {
  train <- data[-folds[[i]], ]
  test <- data[folds[[i]], ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值