查看模型在每个交叉验证的每一折fold上的AUC指标(R语言实现)
在机器学习中,我们经常使用交叉验证来评估模型的性能。除了评估整体性能外,了解模型在每个交叉验证的每一折中的表现也是很有意义的。本文将介绍如何使用R语言来查看模型在每个交叉验证的每一折fold上的AUC指标。
假设我们已经利用训练数据构建了一个分类模型,并使用10折交叉验证对该模型进行评估。下面是一个展示交叉验证过程的例子:
library(pROC)
# 创建一个包含输入特征和目标变量的数据集
data <- iris
data$Species <- ifelse(data$Species == "setosa", 1, 0)
# 定义模型函数(这里使用逻辑回归)
model <- function(train, test) {
glm(Species ~ ., data = train, family = "binomial")
}
# 进行10折交叉验证
set.seed(123)
folds <- createFolds(data$Species, k = 10)
auc_results <- vector("numeric", length(folds))
for (i in 1:length(folds)) {
train <- data[-folds[[i]], ]
test <- data[folds[[i]], ]