A股成长风格宽基指数(创业板、科创板、北交所)

本文详细解读了创业板、科创板和北交所的定位差异,以及它们各自服务的公司类型。介绍了成长风格宽基指数如科创创业50、北证50的特点,市值分布显示北交所公司的规模较小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A股成长风格宽基指数(创业板、科创板、北交所)


创业板指、科创50、北证50……它们到底有什么区别啊?

定位

要回答这个问题,我们就需要回到本源,那就是了解创业板、科创板和北交所这三者的区别。

严格来说,这三者并不属于同一层级。

北交所对应的是上交所深交所,而科创板隶属于上交所创业板隶属于深交所

不过由于创业板、科创板和北交所的上市公司主要都是成长股,所以我们就放在一起进行讨论。

从定位上看,可以看出创业板、科创板和北交所之间的不同。

创业板

主要服务成长型创新创业企业,适应发展更多依靠创新、创造、创意的大趋势,并支持传统产业与新技术、新产业、新业态、新模式深度融合

科创板

名字同样带有个“创”字,在上市公司的行业要求上尤为严格,要求是高新技术产业和战略性新兴产业,包括新一代信息技术、高端装备、新材料、新能源、节能环保、生物医药和符合科创板定位的其他领域,可以说“硬科技”属性更强**

北交所

定位是主要服务创新型中小企业,重点支持先进制造业和现代服务业等领域的企业,推动传统产业转型升级。

关于北交所,有两个关键点是需要知道的:

第一,与创业板和科创板相比,北交所的上市公司处于更早发展阶段,规模也更小。

第二,北交所担任了一定的承上启下角色。下指的是对接新三板创新层,新三板创新层公司可以申请北交所上市。

上指的是当北交所的企业发展壮大到一定程度,就可以转板到创业板、科创板

如果用关键词来总结,那么创业板是“成长型创新创业企业聚集地”,科创板就是“科技创新属性更强”,北交所则是“创新型中小企业主阵地”。

基本情况

大概清楚了创业板、科创板和北交所的差异之后,我们接着来看一下市场上常见的5个成长风格宽基指数的基本情况。

这些指数对投资者还算是比较友好的,从名称上就能够有个基本的认识,例如科创创业50指的是从科创板和创业板按照市值选前50名的股票组合而成,北证50指的是在北交所选规模大、流动性好的50只股票。

不过创业板指和创业板综这两个指数在名称上很相似,需要注意一下两者的不同。

创业板指作为主流指数之一,是最为我们所熟知的,指的是在创业板中选最具代表性的100只股票组合而成。

而创业板综的知名度弱多了,成份股是在创业板上市的所有股票,数量超过1300只。

市值分布

由于科创创业50是同时在科创板和创业板里挑选规模大的50只股票,挑选范围更广,所以市值平均值和中位数都是最高的。

前面我们有介绍到,与创业板和科创板相比,北交所的上市公司处于更早发展阶段,规模也更小,从市值一项就能够一目了然。北证50指数的市值中位数仅为14亿,而科创50为363亿,创业板指为252.79亿。

可能有小伙伴会觉得奇怪:创业板成立时间不是更早吗?怎么创业板指的市值平均值跟中位数比科创50还要低?

原因在于创业板指成份股数量更多,有100只。相比科创50指数只挑选50只成份股,创业板指多出来的那50只成份股市值都偏小,有33只在100199亿元范围内,有22只在200299亿元范围内,拉低了整体水平。

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了HarrisShi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的本概念技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
制作上证综合指数、深证成份指数创业板指数指数两两之间的脉冲响应图,需要进行以下步骤: 1. **数据收集**:获取上述四个指数的历史数据,通常可以从金融数据平台如Wind、同花顺等获取。 2. **数据预处理**:对数据进行清洗预处理,包括处理缺失值、数据对齐等。 3. **建立VAR模型**:使用向量自回归(VAR)模型来捕捉多个时间序列之间的关系。VAR模型可以捕捉到多个变量之间的动态关系。 4. **脉冲响应分析**:通过脉冲响应函数(IRF)来分析一个变量的冲击对其他变量的影响。 5. **绘制脉冲响应图**:使用Python的Matplotlib或Seaborn库,或者R语言的ggplot2包来绘制脉冲响应图。 以下是一个使用Python的示例代码: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.vector_ar.var_model import VAR # 假设我们已经有了四个指数的历史数据,并存储在DataFrame中 # 数据预处理 data = pd.read_csv('index_data.csv') data['Date'] = pd.to_datetime(data['Date']) data.set_index('Date', inplace=True) data = data.dropna() # 建立VAR模型 model = VAR(data) results = model.fit(maxlags=15, ic='bic') # 进行脉冲响应分析 irf = results.irf(10) # 绘制脉冲响应图 irf.plot(orth=True) plt.show() ``` 在这个示例中,`index_data.csv`是一个包含四个指数历史数据的CSV文件。`maxlags`参数用于指定VAR模型的最大滞后阶数,`ic='bic'`表示使用贝叶斯信息准则来选择最佳滞后阶数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值