文章目录
1. 调制方式识别
本章节内容承接接上一篇:
基于机器学习的调制方式识别(含数据和对应代码)
尝试1:换模型(有提升)
共尝试几个模型:
- KNeighborsClassifier(基于聚类思想的分类器)
- DecisionTreeClassifier(基于树模型的分类器)
- SVM(基于分类超平面的分类器)
- XGBoost(基于集成思想的分类器)
效果对比:
KNeighborsClassifier:0.846
DecisionTreeClassifier:0.8092
SVM:0.3169
XGBoost:0.938
注
:以上结果均未进行网格搜索(也就是超参数的调优),超参数均为默认值。
因为,网格搜索用时过长,且增加的效果有限(提升几个百分点左右)
尝试2:拼接多个功率谱特征(失败)
原来用的特征
是:四次方功率谱
,13*250*16385
(识别率86%
左右)
QPSK和16QAM虽然四次方功率谱相似,但是8次方谱明显不同,因此,可以通过增加特征的方式识别。所以,将原来单一的四次方功率谱特征改为多个特征的集合。
改为多个特征的集合
:频谱
,模方功率谱
,平方功率谱
,四次方功率谱
,八次方功率谱
,13*250*(16385*5=81921)
(数据:4.8G,数据读不出来,内存溢出了,增加解释器内存设置,也无法测试)
解决办法:
- PCA降维
- 换新电脑
尝试3:统计特征(失败)
统计特征维度小,内存可以承受,可以进行实验
有量纲
- 均值
- 中位数
- 最大值
- 最小值
- 峰峰值
- 均方根
- 绝对平均值
- 过零点数
- 方差
- 标准差
- 众数
无量纲
- 峭度
- 偏度
- 峰值因子
- 脉冲因子
- 波形因子
上述统计特征又可以分别应用于如下数据:
时域
频谱
模方功率谱
平方功率谱
四次方功率谱
八次方功率谱
数据维度:13250(16*6+1=97)
预测精度:0.5169
问题分析:统计特征维度太低(97维),损失了大量信息,因此单纯的统计特征是不可行的,如果与其他特征拼接一起使用是可以的
尝试4:变换域(未尝试)
- 时域
- 频域
- 小波域
尝试5:机理分析(未尝试)
通过机理分析抽取相应特征
- 时域波形分析:
- 包络的变化情况(区分恒包络信号和非恒包络信号),可用方法:移动平均包络线检测
- 频率不同引起的波形疏密变化(区分FSK信号),可用方法:频谱图上有多个峰值
- 突发与连续(PAM、PCM),可用方法:峰值检测、连续信号的频率应该是稳定的所以也可以用频率跟踪算法(锁相环)
- 频谱和功率谱分析:
- 信号带宽、中心频率
- 载波个数(单载波还是多载波)
- 频率间隔
- 信噪比
- 时频特征分析:
短时傅里叶变换DTFT
- 时频图的视觉信息(FSK能量聚集,PSK高度随机,Multi-Tone强相关【多音调调制,独立多载波相互正交】)
- 瞬时特征:
- 瞬时幅度(可区分:QAM,2ASK等)
- 瞬时频率(区分FSK)
- 瞬时相位(PSK)
- 非线性变换谱特征(已做实验)
模/平方/四次方谱
2. 论文阅读:《电磁频谱数据的关联规则挖掘》
数据集:
伊利诺伊理工学院 (IIT)的无线网络和通信(WiNCom)研究中心建立的基于专用频谱分析仪的连续宽带频谱观测站的开源实测频谱数据集
论文中参考文献没有提到,学校官网也没找到,github上也没有
频谱中